
FlexBFS: A Parallelism-aware Implementation
of Breadth-First Search on GPU

Gu Liu, Hong An, Wenting Han, Xiaoqiang Li, Tao sun, Wei Zhou, Xuechao Wei, Xulong Tang
School of Computer Science & Technology, University of Science and Technology of China

gliu@mail.ustc.edu.cn, {han,wthan}@ustc.edu.cn, {lixq520,suntaos,greatzv,xcwei,tangxl}@mail.ustc.edu.cn

Abstract
In this paper, we present FlexBFS, a parallelism-aware implemen-
tation for breadth-first search on GPU. Our implementation can ad-
just the computation resources according to the feedback of avail-
able parallelism dynamically. We also optimized our program in
three ways: (1)a simplified two-level queue management,(2)a com-
bined kernel strategy and (3)a high-degree vertices specialization
approach. Our experimental results show that it can achieve 3∼20
times speedup against the fastest serial version, and can outperform
the TBB based multi-threading CPU version and the previous most
effective GPU version on all types of input graphs.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Distributed programming, Parallel programming; D.3.3
[Language Constructs and Features]: Frameworks, Patterns

General Terms Algorithms, Performance

Keywords Graph algorithms, Breadth-first Search, CUDA, GPG-
PU

1. Introduction
Graphics processing unit (GPU) has recently become a popular
parallel platform for general computing but it still can’t dominate
this field because many irregular applications exist. These irregular
programs are usually involved with pointer-based data structures
like graphs and trees, and share some common features in run-
time characteristics which are critical to GPU architecture. One
example of these irregular applications is the Breadth-first search
(BFS). Several published works[1–3] have tried to implement BFS
effectively on GPU, but the performance optimization is still a big
problem. One of the challenges is to make the thread configuration
adapt to the parallelism patterns of input graphs. Traditional BFS
implementations on GPU used fixed thread configuration, which
requires knowledge of parallelism pattern of the input graph prior
to the kernel launching. Unfortunately, the parallelism patterns are
usually in great variety and hard to predict, which contributes to
one of the reasons for the low efficiency of BFS implementation on
GPU.
In this paper, we will present a parallelism-aware GPU implemen-
tation with corresponding optimization techniques.

Copyright is held by the author/owner(s).
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
ACM 978-1-4503-1160-1/12/02.

Contributions:(1)We analyzed and profiled the available paral-
lelism within BFS of different types of input graphs. The knowl-
edge of various parallelism patterns can be used to yield a parallelism-
feedback implementation for BFS.(2)We implement FlexBFS to
effectively process working sets with different parallelism patterns
for breadth-first search on GPU. (3)We introduced three optimiza-
tion approaches. Our solution gained up to 20x speedup against the
fastest serial version, and outperformed TBB based multi-threading
CPU version and the previous most effective GPU version on all
kinds of input graphs.

2. FlexBFS: Our GPU Implementation
2.1 Baseline
The available parallelism within BFS can be represented by the size
of the frontier, in which the active nodes can be explored in parallel.
By profiling the available parallelism of our benchmark graphs, we
found they have a wide range of parallelism variation space, and
the parallelism pattern within a single graph could be rather com-
plex. In our baseline implementation, we used a global counter to
record the size of the new frontier. At the end of the kernel, this
counter is feedback to the host to assign adequate threads for the
next kernel iteration. Since extra work generated by the redundant
threads is cut off, GPU resource utilization is much higher than the
fixed thread configuration.
Unfortunately, the baseline version of FlexBFS still surfers perfor-
mance degradation which comes from the following three reason-
s. First, the non-coalesced memory accesses to the global frontier
queue; second, the kernel launch overhead of separate kernel func-
tion call for each level; third, the imbalanced workload in those
irregular graphs with skewed structure.

2.2 Optimizing Techniques
Two-level queue management In our baseline implementation,
store operations into the next frontier queue will causes non-
coalesced memory accesses. As a result, we present a two-level
queue structure. A fast block-level queue is built in the shared
memory within each multiprocessor, while the grid-level queue is
still in the global memory. Each thread within a warp first stores
the neighbor id into the block-level queue, then copy back into the
grid-level queue in a regular way. It is noticeable that each thread
access global memory at consecutive addresses, which meets the
condition of coalescing memory operation.
Combined kernel strategy In the absence of support to global
thread synchronization in CUDA, we have to launch one kernel
instance for each level, which will bring huge kernel-launch over-
head. Thus, we use an inter-block synchronization technique[4]
to implement a combined kernel strategy, which lower down the
launch overhead while the thread configuration still maintain flex-
ible.We first evaluate the new frontier size. If it is within a certain

279



0

1

2
3

4

5

6
7

8

9

10

Regular Irregular Real-world

No
rm

al
ize

d 
Sp

ee
d-

Up
Ser-BFS Tbb-BFS UIUC-BFS FlexBFS

Figure 1. Comparison of average performances obtained by dif-
ferent BFS implementation.

range, there is no need to launch a new kernel instance. If the new
frontier size is out of this threshold, a new thread configuration then
will be set up for the next kernel invoking.
High-degree vertices specialization Load imbalance is a severe
problem in BFS algorithm when input graph is irregular. To avoid
this problem we present the high-degree vertices specialization ap-
proach. We process those high-degree vertices separately using a
special queue. We first check the degree of each active node; if the
degree is larger than a threshold, this node is inserted into a special
queue instead of exploring neighborhood. After other low-degree
vertices are finished, nodes in special queue are processed using all
available threads.

3. Experimental Setup
Our experiments were conducted on an NVIDIA Tesla C2050 GPU
with an Intel quad core Xeon E5506 CPU. To cover all types
of graph instances, we choose three kinds of graphs as our input
working set. They are classified as regular, irregular and real-word
graphs. The regular graph is generated based on grid graph. The
irregular graphs are built on the bases of regular ones. We add 0.1%
high-degree vertices into the original grid graph, which causes
extremely load imbalance. We also used a set of real-world graphs.
They are traffic route nets in different parts of USA from DIMACS
challenge website.

4. Experimental Results
To evaluate the performance of our FlexBFS, we compare it with
the serial version and TBB version running on CPU and UIUC-BFS
[3] running on GPU. The optimal TBB performance is obtained us-
ing 4 threads on our CPU platform.
Figure 1 illustrates the performance of the four BFS implemen-
tations on 3 sets of input graphs. Generally speaking, our solu-
tion outperforms the other ones. The FLexBFS obtains an average
speedup of 5 times faster than serial CPU version and 2.5 times a-
gainst TBB version. Our method is also 1.5 times faster than UIUC-
BFS, the previous most effective GPU implementation, because of
the parallelism-aware scheme and other optimization methods. It is
noticeable that the performance of UIUC-BFS is particulary poor
when processing irregular graphs, even worse than CPU versions.
L.Luo et. al. mentioned in their paper that they had to convert the
irregular graphs into near-regular graphs by splitting the big-degree
nodes before applying their BFS implementation. Without this pre-
treatment process, their version suffers seriously from imbalanced
work. In Section 2.2, we introduced three optimization methods
to improve performance. We combine these techniques with the
baseline implementation into three configurations summarized in
Table1. Figure 2 illustrates the effectiveness of our proposed op-
timization methods. In most cases, the baseline FlexBFS is well

Name Description
Fixed Basic GPU BFS implementation using a fixed

thread configuration
Baseline baseline FlexBFS implementation using flexi-

ble thread configuration
Config1 Baseline + Combined kernel strategy
Config2 Config1 + Two-level queue management
Config3 Config2 + High-degree vertices specialization

Table 1. Optimization configurations of FlexBFS

0

2

4

6

8

10

12

14

16

18

Regular Irregular Real-world AVG

No
rm

al
ize

d 
Sp

ee
d-

Up

fixed baseline config1 config2 config3

Figure 2. performance of BFS under a set of configurations using
different optimization methods.

performed than the fixed configuration, which demonstrates that
unexplored parallelism does exist in the fixed-thread BFS imple-
mentation. Config1 shows that the combined kernel strategy can
shorten the overall execution time by up to 30%. Config2 improves
the performance of regular graphs by reducing the random accesses
overhead to a great extend. The rightmost bars of each column in
figure 2 display the impact of the high-degree vertices specializa-
tion, from which the irregular graphs can benefit most.

5. Conclusions
We have presented a parallelism-aware implementation for breadth-
first search algorithm on GPU. Our solution can deploy proper
thread resources according to the dynamic profile of parallelism in
BFS. We have analyzed the main reasons of performance degrada-
tion in BFS, and proposed several optimizing approaches for these
problem. The experimental results show that our solution achieves
up to 20x speedup over the fastest serial BFS program, and out-
performs TBB version and previous GPU implementations on all
three types of graphs.

Acknowledgments
This work is supported financially by the National Basic Research
Program of China under contract 2011CB302501,the National Nat-
ural Science Foundation of China grants 60970023, the National
Science & Technology Major Projects 2009ZX01036-001-002 and
2011ZX01028-001-002-3.

References
[1] P. Harish and P. J. Narayanan. Accelerating large graph algorithms on

the gpu using cuda. In HiPC’07.
[2] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Accelerating cuda

graph algorithms at maximum warp. In PPoPP’11.
[3] L. Luo, M. Wong, and W. mei Hwu. An effective gpu implementation

of breadth-first search. In 47th DAC 2010.
[4] S. Xiao and W. chun Feng. Inter-block gpu communication via fast

barrier synchronization. In IPDPS 2010.

280




