
Optimizing Off-Chip Accesses in Multicores

Wei Ding Xulong Tang
Mahmut Kandemir

Pennsylvania State University
University Park, PA, USA

{wzd109, xzt102,
kandemir}@cse.psu.edu

Yuanrui Zhang ∗

Intel Corp.
Santa Clara, CA, USA

yuanrui.zhang@intel.com

Emre Kultursay
Pennsylvania State University

University Park, PA, USA
euk139@cse.psu.edu

Abstract
In a network-on-chip (NoC) based manycore architecture, an off-
chip data access (main memory access) needs to travel through
the on-chip network, spending considerable amount of time within
the chip (in addition to the memory access latency). In addition, it
contends with on-chip (cache) accesses as both use the same NoC
resources. In this paper, focusing on data-parallel, multithreaded
applications, we propose a compiler-based off-chip data access
localization strategy, which places data elements in the memory
space such that an off-chip access traverses a minimum number
of links (hops) to reach the memory controller that handles this
access. This brings three main benefits. First, the network latency of
off-chip accesses gets reduced; second, the network latency of on-
chip accesses gets reduced; and finally, the memory latency of off-
chip accesses improves, due to reduced queue latencies. We present
an experimental evaluation of our optimization strategy using a
set of 13 multithreaded application programs under both private
and shared last-level caches. The results collected emphasize the
importance of optimizing the off-chip data accesses.

Categories and Subject Descriptors C.1.2 [Processor Archi-
tectures]: Multiple Data Stream Architectures (Multiprocessors);
D.3.4 [Programming Languages]: Processors

Keywords Manycores, off-chip accesses localization, memory
controller
1. Introduction
After hitting the power wall, processor designs focused more on in-
tegrating multiple simple cores, instead of a complex processor on
a single die. As shown in Figure 1, an NoC (network-on-chip [1])
based manycore is constructed from multiple point-to-point data
links connected by switches such that messages can be relayed
from any source node to any destination node over several links
(hops). Optimizing data accesses in NoC-based manycore systems
has received considerable attention lately. The proposed strategies
include careful design of cache access/lookup strategies [2–4] and

∗ This work has been done when the author was with Penn State.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, , June 13–17, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737989

MC 2MC 1

L2 I/D Cache

Router

Tags DataTags Data

Controller

Core
L1 I/D

Core
Cache

Node LinkNode
MC 4MC 3

Link

Figure 1: Structure of a two-dimensional 4× 4 NoC based many-
core with 4 memory controllers (MCs). Physical address space is
distributed across memory controllers (MC1 through MC4).

MC 1 MC 2MC 1

2 3 4 5 60 1

MC 2

2
3

10 11 12 13 148 9 15

2 3 4 5 60 1
2

1
18 19 20 21 2216 17 23

26 27 28 29 3024 25 31

1

34 35 36 37 3832 33 39

42 43 44 45 4640 41 47

50 51 52 53 5448 49 55

58 59 60 61 6256 57 63

MC 3 MC 4

(a)

MC 1 MC 2MC 1 MC 2

3

4

3

2

L2

5

2

5

1

L1

MC 3 MC 4

(b)
Figure 2: (a) Flow of a memory access on an NoC-based manycore
with per core private L2 caches. The number attached to a node
represents its core ID. (b) Flow of a memory access with shared L2
caches [1]. The L2 cache is shared by all cores.

on-chip access localization [5, 6]. While these optimizations are
certainly important and can provide significant performance and
power benefits, they are mostly oriented towards minimizing the
number of cache misses and do not have much impact on the la-
tency of individual off-chip (main memory) accesses. The off-chip
access latencies in an NOC-based manycore can be very important
due to the following reasons:
• Since off-chip accesses must travel through the NoC to reach

their target memory controllers, they can spend significant amount
of time in the NoC, depending on the network congestion as well as
the distance between the node that makes the off-chip request and
the memory controller.
• Since off-chip accesses and on-chip accesses (cache accesses)

share the same on-chip network, they contend for the same links
and routers/buffers. Consequently, off-chip accesses also cause ad-
ditional delays for on-chip cache accesses, further affecting the ap-
plication performance.
• A network-delayed off-chip access will also join in the mem-

ory queue late, increasing its memory latency.1

1 Memory latency includes the time spent in the queue as well.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PLDI’15, June 13–17, 2015, Portland, OR, USA
c© 2015 ACM. 978-1-4503-3468-6/15/06...$15.00

http://dx.doi.org/10.1145/2737924.2737989

131

0
5
10
15
20
25
30
35

C
o

n
tr

ib
u

ti
o

n
 o

f
O

ff
-

C
h

ip
 A

cc
e

ss
e

s
(%

)

Figure 3: Contribution of off-chip data accesses to the total data
accesses in an 8× 8 mesh-based manycore system.

0

20

40

60

80

R
e

d
u

ct
io

n
 (

%
)

network latency (on-chip references) network latency (off-chip references)
memory latency execution time

Figure 4: Impact of optimal scheme (implemented in our simula-
tor) on network latency, memory latency as well as on execution
time, under page interleaving of physical addresses across memory
controllers.

Figures 2a and 2b show the memory access flows with private
(per core) or shared L2s, respectively. In the case of private L2s (a),
when an L1 miss is detected, a request is sent to the local L2 cache.
In case of an L2 miss, this request is forwarded to a centralized L2
tag directory, which is cached in the memory controller (MC) to
which the requested data is mapped (path 1). The directory decides
whether to get the data from another on-chip L2 cache (in which
case we have an on-chip data access), or issue an off-chip memory
request. In the latter case, the MC schedules this request (path 2),
and the response from the corresponding memory bank is sent to
the private L2 cache (path 3). In comparison, for the shared L2 case
(b), based on the physical address, a given data block is assigned
to an L2 bank (called the home bank) where it resides (when it is
on-chip); and all off-chip requests for that data block are issued by
its home (L2) bank. In order to look-up the corresponding L2 bank,
a request is sent from L1 to L2 (path 1). If the data is a hit in the
L2, then the response data is sent back to the L1 (path 5). In case
of an L2 miss, the request is forwarded to the memory controller
(path 2). The memory controller schedules this request (path 3) and
the response of the memory module is sent first to the L2 (path 4)
and then to the L1 (path 5).

The additional cost incurred by an off-chip access (over an on-
chip access) in an NoC-based manycore system is mainly a function
of two parameters: (1) the time spent in the network (paths 1 and
3 in Figure 2a and paths 2 and 4 in Figure 2b), and (2) the time
spent in MC and in accessing the memory bank (path 2 in Figure 2a
and path 3 in Figure 2b).2 Our experiments show that cumulative
network latency, in a large manycore, can be comparable to the
memory access latency, which means the network latency can play
a significant role in off-chip accesses. This latency can be reduced
by improving the locality of off-chip accesses, i.e., reducing the
distance between the requester of an off-chip data element and the
MC that manages the block/page that holds the data. For example,
in Figure 2a, if the off-chip access request from the highlighted L2
bank is sent to MC3, the distance between the requester of the data
and the node that is connected to the memory controller that holds
the data is 10 links, whereas the distance for the off-chip data access
through path 1 is only 4 links. Everything else being equal, this L2
would prefer to satisfy most of its off-chip data requests from the
nearest memory controller (MC2).

Our goal in this work is to optimize the network behavior of off-
chip data accesses by minimizing the distance they need to travel

2 The impact of (2) can be reduced through smart memory controller
scheduling algorithms as proposed in [7], which is orthogonal to our work.

on the network. Note that, our novelty is not in the employment
of data layout transformations in a compiler (after all, many prior
parallelization and locality optimizations for data-intensive codes
use data transformations in one way or another); rather, our novelty
lies in demonstrating how layout transformations can be used to
achieve a different goal, namely, optimizing the behavior of off-
chip memory accesses. To our knowledge, this is the first compiler-
based work that targets off-chip accesses in NoC-based manycores
with both private and shared L2(s). Our specific contributions can
be summarized as follows:
• We present experimental evidence showing that an optimal

scheme that reduces the latency of off-chip memory accesses on
both on-chip network and off-chip memory queue can have a sig-
nificant impact on not only the off-chip accesses but also on-chip
accesses.
• Motivated by this characterization, we propose a compiler-

guided data layout transformation strategy that improves the local-
ity of off-chip data accesses in NoC-based manycores with per core
private L2s as well as shared L2s. Our strategy handles both page
and cache interleaving of physical addresses across memory con-
trollers. In the case of page interleaving, our approach also needs
help from the Operating System (OS).
• We present an experimental evaluation of our approach us-

ing 13 multi-threaded application programs. Our approach brings
an average of 20.5% saving in execution time (under cache-line in-
terleaving of physical addresses across memory controllers). The
corresponding execution time improvement in the case of shared
L2 is about 24.3%.

While, conceptually, loop restructuring could also be used to
achieve our goals, we opted to use data layout transformations in
this work, mainly because loop transformations are constrained by
data and control dependences. In contrast, data transformations are
essentially a kind of renaming and not affected by dependences,
thus providing more flexibility to the compiler.

Also, while one can envision a pure hardware-based custom
scheme which can implement a physical address distribution across
last-level caches and memory controllers such that the distance cov-
ered by cache misses is minimized, such a scheme would require
changes to original hardware and more importantly it would not
be flexible, as address assignment needs to be fixed at architecture
design time. In contrast, our approach works for a given hardware
and does not require hardware modifications. Furthermore, we can
also tune our cache-to-memory controller mappings to strike the
right balance between locality (short NoC distance) and memory
parallelism (e.g., going to the nearest memory-controller may not
always be a good idea when memory parallelism dominates).

2. Importance of Off-Chip Data Accesses
We present in Figure 3 the contribution of off-chip data accesses
to the total data accesses for a set of multithreaded applications
in an 8 × 8 mesh-based manycore system with private L2s and
page granularity of interleaving of physical addresses across mem-
ory controllers (details of our experimental platform will be given
later). These results indicate that off-chip accesses can contribute,
on an average, to about 22.4% of the total (dynamic) data accesses.
While this number is not very high, the impact of these accesses
on execution time can be much higher. It is important to observe
that an off-chip accesses that does not access the nearest memory
controller can cause three types of performance problems in our
architecture. First, such an accesses spends more time in the on-
chip network compared to an access that goes to the nearest mem-
ory controller. Second, spending more time in the network means
more contention for on-chip accesses (cache and coherence traffic)
as well. And third, such an access can also end up spending more
time in the memory queue.

132

Virtual Address
Page offset

Vi t l t Ph i l

g ff

Virtual-to-Physical
Address Translation Cache block

offset bits
Physical Address

offset bits

Page to MC mapping bits
Cache block to MC mapping bits

(cache block interleaving)

g pp g
(page interleaving)

Figure 5: Virtual-to-physical address translation and the interpre-
tation of the physical address bits.

Figure 4 quantifies the impact of an optimal scheme (imple-
mented in our simulator) on these three types of latencies dis-
cussed above as well as on execution time. This optimal scheme
assumes that each memory request originating from any core (in
the case of private caches) or L2 controller (in the case of shared
caches/SNUCA) always accesses the nearest MC and does not in-
cur any additional latency (due to bank contention). In other words,
this optimal version enjoys both high locality and high memory-
level parallelism. The results presented in Figure 4 show that the
optimal scheme reduces, on average, the network latency of on-
chip memory accesses by 20.8%, the network latency of off-chip
accesses by 68.2% and the memory latency of off-chip accesses by
45.6%. These improvements collectively translate to an average ex-
ecution time improvement of 19.5% over the default case. In other
words, optimizing off-chip accesses has significant potential for
improving performance, and the remainder of this paper discusses
a compiler-based strategy and evaluates how close it can come to
the savings achieved by the optimal scheme quantified above.
3. Background
Data-to-Core mapping: There are many ways to parallelize a loop-
intensive application. For example, in OpenMP’s static scheduling,
the computations are evenly divided into contiguous chunks and
assigned to the cores in order. An application parallelized in this
way indirectly indicates the portion of data elements that will be
accessed by each core, which is called the “Data-to-Core mapping”
in this paper.
Data-to-MC mapping: The underlying Data-to-MC mapping tells
how physical addresses are distributed across MCs. In a system
with N memory controllers, log(N) bits of the physical address
are used to determine the mapping of data to memory controllers.
Depending on where these bits are taken from the physical ad-
dress, different data interleavings (physical address-to-memory
controller mapping) can be implemented in hardware. Figure 5
shows the virtual-to-physical address translation and the usage of
physical address bits in the target architecture. There are two al-
ternative virtual-to-physical address translations. In the first one,
the first log(N) bits following the cache block (line) offset bits
are used, which results in cache block interleaving across mem-
ory controllers. In other words, if a cache block with address Bi

is mapped to MC j, the next cache block at address Bi+1 will be
mapped to MC j + 1. This can be expressed as j = Bi mod N .
In this cache-line interleaving, the bits used for memory controller
selection are not modified by the virtual-to-physical address trans-
lation process. Therefore, one can statically determine the memory
controller where a particular data element will reside by simply
examining its virtual address. Alternatively, memory controller se-
lection bits can be taken from the first bits after the page offset
field. In this case, the granularity of interleaving will be a page. Our
compiler-based off-chip access optimization strategy is evaluated
with both cache-line and page interleavings of physical addresses.
4. Framework Overview
Our approach primarily targets data-parallel affine programs, where
loop bounds and array indices (subscript expressions) are affine
functions of the enclosing loop indices and loop-independent vari-

lb?P lb?Q lb?R lb?S lb?P lb?Q

‘\†¡?\~~‒¡†† ?|\|⁄¡?‘“›|¤?†ƒ”¡

›‒ƒ£ƒ‹\“?«¡«›‒„?
“\„›·‡

‡‒\‹†¢›‒«¡~?
“\„›·‡

b›‒¡?O b›‒¡?P
é

Figure 6: Using layout transformation to localize off-chip memory
accesses.

Layout

Customization

(Section 5.3)

Determining Data-

to-Core Mapping

(Section 5.2)

Data Transformations

L2-to-MC Mapping

OS-Level

Page

Allocation

Application code (with

parallelization information)

Figure 7: High-level view of our proposed approach.
ables/constants. However, our approach can also handle certain ir-
regular references in the program being optimized by approximat-
ing them using affine expressions and profile data, as will be dis-
cussed later in the paper. We also assume that all array sizes are
known before our approach is applied. If this information is not
available, we profile the code to derive it. Also, most of the loop
nests in our target codes are data parallel with similar data accesses
rates across different cores. Our approach does not do anything spe-
cific for conditionals. It conservatively assumes that both branches
can be taken (equally likely). This can potentially reduce the ben-
efits (as conflicting references in different branches may prevent a
unique/ideal data layout selection), but we observed this to happen
in only 1 application in our experimental suite.

Consider the private L2 case shown in Figure 2a as an example.
A Data-to-Core mapping is illustrated in Figure 6, where the un-
derlying Data-to-MC mapping is also given. In the original layout,
the off-chip access requests to the data elements mapped to Core 0
will be sent to all four MCs, while the desired memory controller
for these accesses should be MC1. That is to say, ideally, all the
off-chip accesses to the data elements mapped to a core should be
sent to the MC that is the closest to this core, but the underlying
Data-to-MC mapping prevents this from being realized. One way
to solve this problem is to rearrange/reorder data elements on the
virtual address space (called memory layout transformation) such
that each data element can be mapped to the desired MC. For exam-
ple, the transformed layout at the bottom of Figure 6 successfully
eliminates the mismatch mentioned above: the data elements ac-
cessed by Core 0 are always mapped to MC1. How to generate this
kind of layout is the main task of our proposed framework.

Our off-chip access optimization strategy can be applied to
hand-parallelized or compiler-parallelized codes, and consists of
two steps, as shown in Figure 7. In the first step, which is called
Determining Data-to-Core Mapping, we identify the data/data re-
gions accessed by each core/thread locally, and determine the map-
ping between data elements and cores. In the next step, which is
called Layout Customization, we reorganize the layout of the data
elements accessed by each core on the virtual address space such
that the off-chip access requests of these data elements can always
be sent to the “most desirable” MC. To achieve this, we employ
a concept called L2-to-MC mapping which is considered as an in-
put for the second step and provided by the user/programmer. This
mapping is provided through the command line, as the number of
cores in a cluster. Figure 8 shows two sample L2-to-MC mappings
with four MCs. The nodes covered by the same shaded area form a
cluster. All the off-chip access requests from the L2s connected to
the nodes in the same cluster will be sent to the same set of MCs.
Note that, not any L2-to-MC mapping is valid. In order to obtain a

133

lb?Q lb?P lb?Qw

b“·†‡¡‒ b“·†‡¡‒ b“·†‡¡‒xx b“·†‡¡‒ b“·†‡¡‒
P

b“·†‡¡‒
Q

xx

b“·†‡¡‒ b“·†‡¡‒ b“·†‡¡‒b“·†‡¡‒ b“·†‡¡‒
R

b“·†‡¡‒
S

lb R lb R lb Slb R lb R lb S

(a)

MC 1 MC 2X

ClusterY Cluster
1

Y

ClusterCluster
2

MC 3 MC 4MC 3 MC 4

(b)
Figure 8: Different L2-to-MC mappings. The data accessed by the
cores in a cluster are allocated/accessed from the corresponding
controllers (indicated by arrows).

for (i = 2; i<N-1; i++)

for (j = 2; j<N-1; j++)

Z[j][i] = Z[j-1][i] + Z[j][i] + Z[j+1][i];

for (i = 2; i<N-1; i++)

for (j =2; j<N-1; j++)

Z’[i][j] = Z’[i][j-1] + Z’[i][j] + Z’[i][j+1];

for (i = 2; i<N-1; i++)

for (j = 2; j<N-1; j++)

Z’’[j/(k*p)][((i/b)%q)/2][((i/b)%q)%2][j%(k*p)] =

Z’’[(j-1)/(k*p)][((i/b)%q)/2][((i/b)%q)%2][(j-1)%(k*p)]

+ Z’’[j/(k*p)][((i/b)%q)/2][((i/b)%q)%2][j%(k*p)] +

+ Z’’[(j+1)/(k*p)][((i/b)%q)/2][((i/b)%q)%2][(j+1)%(k*p)];

(a) Original parallel code

(b) Code fragment after determining the Date-to-Core mapping

(c) Code fragment after layout customization

Figure 9: Sample code.

desired layout, we require, first, each cluster must contain an equal
number of cores, and second, each cluster should be assigned to
an equal number of memory controllers. This is due to our strip-
mining and permutation transformations which we discuss later.

Each of the L2-to-MC mappings illustrated in Figure 8a and
Figure 8b has its own advantages and drawbacks. Specifically, in
(a), since all the off-chip access requests from the same cluster
will always be sent to the “nearest” memory controller, the average
distance that these requests need to travel is less than the case in
(b); that is, (a) localizes off-chip accesses better than (b). However,
if too many off-chip access requests are sent by a group of cores
to the same MC simultaneously, the time required to process these
requests can significantly degrade application performance. In this
case, (b) could be a better choice since now the requests sent
from one core will be processed by two memory controllers. This
reduces the pressure on each memory controller to some extent
and, therefore, helps with processing of off-chip accesses. In other
words, (b) can enjoy better memory level parallelism in processing
the off-chip accesses. To summarize, different L2-to-MC mappings
exhibit different locality vs. parallelism tradeoffs. The user can
specify any L2-to-MC mapping as long as the specified mapping
satisfies the two constraints discussed above. Our approach will
then try to localize the off-chip accesses based on this L2-to-MC
mapping. In the rest of our discussion, we mainly focus on the
case where the underlying Data-to-MC mapping is at the cache-
line interleaving granularity.

As stated above, our implementation takes L2-to-MC mapping
as input from the user. In principle, there are lots of potential
valid L2-to-MC mappings. As a result, automatically determining
the best L2-to-MC mapping is very difficult in practice. However,
given a set of potential mappings (provided by the user), the com-
piler may be able to identify the best one from among them. In fact,
we implemented a compiler analysis that identifies, given a set of
L2-to-MC mappings, the most effective one by weighing two met-
rics: (1) distance-to-MC and (2) memory-level parallelism (MLP).
Our preliminary evaluation of this compiler analysis shows that it

can successfully favor the mapping in Figure 8b over the one in
Figure 8a in two of our applications, fma3d and minighost. That is,
while it is difficult to determine an ideal mapping fully automati-
cally, the compiler may be able to choose the best mapping from a
given set of mappings.

5. Off-chip Access Localization
5.1 Iteration Space, Arrays, and Hyperplanes
The iteration space of an m-level loop nest can be viewed as an
m-dimensional polyhedron bounded by the loop bounds. Each it-
eration (each point in this polyhedron) can be expressed by an it-
eration vector ~i = (i1, i2, · · · , im)T , where i1, i2, · · · , im are the
loop iterators. Similarly, the data space of an n-dimensional ar-
ray can be viewed as an n-dimensional polyhedron bounded by the
array bounds. Each data element (each point in this polyhedron)
can be expressed by a data vector ~a = (a1, a2, · · · , an)T , where
a1, a2, · · · , an are the array indices. The mapping between itera-
tion space and data space is represented by the array references,
which can be written as ~r = A~i + ~o, where A is an n × m
constant matrix called the access matrix, and ~o is an n × 1 con-
stant vector. For example, the reference A[i1][2i2 + 1] in a two-
level loop nest (with loop iterators i1 and i2) can be expressed

as: ~r =

(
1 0
0 2

)
· ~i +

(
0
1

)
, where ~i = (i1, i2)

T . When

~i = (1, 2)T , we have~a =

(
1 0
0 2

)
·
(

1
2

)
+

(
0
1

)
= (1, 5)T .

A hyperplane h in an k-dimensional polyhedron is a flat sub-
set of (k − 1) dimensions, which can be characterized by a k × 1

vector ~h = (h1, h2, · · · , hk) and a constant c. In our context, ~h
is called the hyperplane vector and c is called the hyperplane off-
set. Any point ~p = (p1, p2, · · · , pk)T on h satisfies ~h~p = c. In
this work, we focus on parallelized affine loop nests where the
array subscript expressions and loop bounds are affine functions
of enclosing loop indices and loop-independent variables. One of
the frequently-used loop parallelization and distribution schemes
in such codes is called block-cyclic distribution, where, with one
thread per core, an m-dimensional iteration space is evenly parti-
tioned into chunks (the last chunk may have a smaller number of
iterations) by w set of parallel hyperplanes. For simplicity, in the
rest of our discussion, we assume w=1, i.e., there is only one set of
parallel hyperplanes that is orthogonal to the u-th dimension of the
iteration space, which is called the iteration partition dimension.
Therefore, the hyperplane vector that represents this set of parallel
hyperplanes is a 1 ×m unit vector (denoted as ~hI) in the form of
(0, 0, · · · , 0︸ ︷︷ ︸

u−1

, 1, 0, · · · , 0). Figure 9(a) gives an example, where the

parallelized loop is marked as bold, and the corresponding iteration
distribution is illustrated in Figure 10(a).

5.2 Determining Data-to-Core Mapping
In this step, we isolate the data elements touched by different
threads/cores. Specifically, we evenly partition the data space into
data blocks by a set of parallel hyperplanes orthogonal to a given di-
mension, such that, most of the data elements in a given data block
are accessed by the same thread/core. This dimension is called the
data partitioning dimension. If we specify the v-th dimension as the
data partitioning dimension,3 then the set of parallel hyperplanes
that partition the transformed data space can be represented by the
hyperplane vector ~hA, which is a 1 × n unit vector in the form

3 In an attempt to reduce the padding overhead mentioned in Section 5.3,
this dimension is always chosen to be the slowest-varying dimension (e.g.,
first dimension in a row-major memory layout).

134

Ih
j

i

…

…

Iteration Space

hyperplane

Core 0

Core 1

Core 63

Core 0

Core 1 chunk

(a)

Fastest Varying Dimension

Core1

…

…

A
h

Transformed Data Space

hyperplane

Core 0

Core 1

Core 63

Core0 data block

(c)

Original Data Space

Fastest Varying Dimension

…

C
o

re
 0

C
o

re
 1

C
o

re
 6

3

…

(b)

Figure 10: Determining the Data-to-Core mapping for array Z in
Figure 9(a).

of (0, 0, · · · , 0︸ ︷︷ ︸
v−1

, 1, 0, · · · , 0). Figure 10(c) illustrates a transformed

data spaces for array Z in the parallel code shown in Figure 9(a),
where the partitioning dimension is specified as the slowest-varying
dimension, i.e., v = 2. It should be noted that, in the original data
space, shown as Figure 10(b), although most data elements in the
same data block are accessed by the same thread/core, these data
blocks are not formed by the set of parallel hyperplanes orthogo-
nal to the v-th dimension (data partitioning dimension). Therefore,
they do not form a valid Data-to-Core mapping. We employ a uni-
modular layout transformation to find a partitioning, which can be
characterized by a transformation matrix U [8]. Each data vector
~a in the original data space is mapped to a unique vector ~a′ in the
transformed data space, i.e., ~a′ = U~a, and the array reference ~r is
changed accordingly to ~r′, i.e., ~r′ = U~r.
Single Array Reference: Let us first discuss the case where there
is only one array reference ~r, how to obtain the transformed data
space by determining the entries of the transformation matrix U .
Any two iterations~i1 and~i2 that reside on a hyperplane defined by
a hyperplane vector ~hI should satisfy:

~hI(~i1 −~i2) = 0. (1)
Let~i1,2 =~i1−~i2, and ~ei be an m× 1 unit vector, where 1 appears
at the i-th position; the solution set for ~i1,2 can be expressed as∑m

i=1,i 6=u ki~ei, where ki is an arbitrary integer. Similarly, in the
transformed data space, the two data elements ~a′1 and ~a′2 accessed
by these two iterations through ~r′ should always reside on the same
hyperplane defined by the hyperplane vector ~hA. Therefore, we
have ~hA(~a

′
1 − ~a′2) = 0. Assuming ~r = A~i + ~o and ~a′ = U~a,

we further have:

~gvA(~i1 −~i2) = 0, (2)
where ~gv is the v-th row vector of U , and v is the data partitioning
dimension. In other words, any two iterations~i1 and~i2 that satisfy
Eq. (1) must also satisfy Eq. (2). As a result, we have ~gvA~ei = 0,
where 1 ≤ i ≤ m, i 6= u. Let B be a matrix that consists of all the
column vectors of A except the u-th one (called a submatrix of A).
Then, the last expression can be re-written as:

BT~gTv = 0. (3)
The above homogeneous linear system can be solved by Integer
Gaussian Elimination [9]. This also indicates that the desired trans-
formation matrix U is completely determined by its row vector ~gv .
In cases where the solver returns a non-trivial solution for ~gv , we
determine the remaining n− 1 row vectors such that U is unimod-
ular. In the example of Figure 9(a), u = 1 and B = (0, 1)T . If
v = 1, the solution returned for ~g1 is (1, 0); if v = 2, the solution
returned for~g21 is (1, 0). Since we prefer the v-th dimension being
the slowest-varying dimension (v = 2), the transformation matrix

U is then determined as
(

0 1
1 0

)
. The transformed array indices

are shown in Figure 9(b), and Figures 10(b) and 10(c) illustrate data
space for array Z before and after the transformation, respectively.

Multiple Array References: Next, we study how to determine U
in a global sense when there are multiple references to an array
in different parallelized loop nests. Assuming that there are k dif-
ferent submatrices B1, B2, · · · , Bk for these references, based on
Eq. (3), we have k homogeneous linear systems to solve, each cor-
responding to a submatrix. A unique ~gv (v is the data partitioning
dimension) that satisfies all these systems may or may not exist.
That is, we may not always end up in a transformed data space
where all the data elements on the hyperplane orthogonal to ~hA

are accessed by a single thread. To address this potential problem,
our strategy is to assign a weight to each submatrix to determine
the most “beneficial" linear system that, when solved, satisfies the
majority of references. Specifically, assuming that there are s ref-
erences in the given set of loop nests that have the same submatrix
Bi, then the weight of Bi, denoted as W (Bi), is the total num-
ber of occurrences of theses references, i.e., W (Bi) =

∑s
j=1 nj ,

where nj is estimated by the product of the trip counts (the number
of iterations) of the loops that enclose the said reference.

5.3 Layout Customization
It is important to emphasize that we apply our layout transforma-
tion to each array separately. The formal compiler algorithm will be
given later. So far, we have determined the Data-to-Core mapping
and assumed that the user provides a valid L2-to-MC mapping. If
it is the local L2 cache that sends the off-chip access request to the
MC, which is true for the case of private L2s,4 then these two map-
pings actually indicate a desired Data-to-MC mapping. However,
because of the underlying Data-to-MC mapping mechanism, this
desired mapping may not always be realized directly. We address
this problem (of implementing the desired Data-to-MC mapping)
by customizing the layout obtained in Section 5.2 according to the
L2-to-MC mapping specified by the user.

We employ two layout transformation techniques, strip-mining
and permutation, originally used in works such as [10], for an
entirely different purpose. Let Ni denote the size of the array
along the i-th dimension. Then, strip-mining with a block size of
s transforms this dimension into two dimensions with the size of
Ni/s and s; and a reference ~r = (· · · , ri, · · ·)T becomes (· · · ,
ri/s, ri%s, · · ·)T . After this transformation, ri/s and ri%s can be
used to identify the index of the block and the offset within a block,
respectively. In comparison, permutation switches the positions of
two dimensions in an array to change the data placement in the
linear memory space; and a reference ~r = (· · · , ri, · · · , rj , · · ·)T
becomes (· · · , rj , · · · , ri, · · ·)T . The run-time overhead associated
with these transformations comes mainly from the division and
module operations employed. In our current implementation, we
use the techniques proposed in [10] and [5] to reduce these costs.
We also employ padding [11] to keep the base addresses of arrays
aligned to the desired memory controller, and align data elements
within an array to make the strip-mined dimension divisible by s.
Next, we discuss how to use the above techniques to customize the
layout for private L2s and shared L2.

Private L2 Case: For a manycore system with private L2
caches, our first step is to transform original reference (obtained
from Section 5.2) (· · · , rv, · · · , rn)T to (· · · , R(rv), · · · , rn)T ,
where the v-th dimension is the data partitioning dimension iden-
tified in Section 5.2, and R(rv) is a set of transformed array in-
dices that can be used to identify the cluster for each data ele-
ment accessed through this reference. Recall that, in order to iden-
tify the data blocks touched by each core/thread, the data space is
partitioned by a set of parallel hyperplanes orthogonal to this di-
mension. Therefore, R(rv) can be obtained by performing multi-

4 As will be shown later, one can use layout transformation techniques to
make this true for the shared L2 case as well.

135

…

base address p

MC 1 MC 2 MC 3 MC 4 MC 1 MC 2

Cluster 1 Cluster 2

…

(a) Customized layout for L2-to-MC
in Figure 8b. In this example, k = 2.

…

base address p

MC 1 MC 2 MC 3 MC 4 MC 1 MC 2

Cluster 1 Cluster 2 Cluster 3 Cluster 4

(b) Customized layout for L2-to-MC
in Figure 8a. In this example, k = 1.

Figure 11: The customized layouts for the L2-to-MC mappings
shown in Figure 8.

virtual address space,

original layout

physical address space,

after OS page allocation

virtual address space,

after layout

customization

 page size

MC 1 MC 2 MC 2 MC 1

Figure 12: Changing Data-to-MC mapping through the OS sup-
port.

ple strip-minings on the v-th and the newly-generated dimensions.
Specifically, assuming that we have cx × cy number of clusters
and each cluster has nx × ny number of cores, then R(rv) can
be expressed as (((rv/b)/(ny ∗ cy ∗ nx))%cx, ((rv/b)/ny)%cy),
where b is the data block size, and the subscript “x" and “y" indi-
cate the number along the X-axis and Y -axis, respectively. Note
that, here, ((rv/b)/ny)%cy) is the general form to calculate the
index along the y-th dimension, and stripmining is performed three
times, namely, in rv/b, (rv/b)/ny , and ((rv/b)/ny)%cy .

Next, based on this transformed layout, we perform permutation
and strip-mining on the fastest-varying dimension of the target
array (e.g., the last dimension in a row-major layout) to obtain an
interleaved layout. Assuming that k is the number of MCs assigned
to each cluster (see Figure 8 for sample assignments), and p is the
cache block (line) size (in terms of the number of data elements), by
transforming the array reference into the form of (· · · , rn/(k ∗ p),
R(rv), rn%(k∗p))T , every consecutive k∗p data elements will be
accessed by the cores in the same cluster in a round-robin fashion,
and the off-chip accesses made for k ∗ p consecutive data elements
will be sent to the memory controllers indicated by the L2-to-MC
mapping.5 An example is given in Figure 11.
Shared L2 Case: In a shared L2 based system [1], all the on-
chip and off-chip requests for a data element are issued by its home
(L2) bank, not by its local bank. The home bank for each data el-
ement is determined by the underlying Data-to-L2 Bank mapping
mechanism, which is similar to the Data-to-MC mapping explained
in Section 3. However, in the case of cache-line interleaving, this
introduces an additional problem: if we only focus on improving
the on-chip access locality, although the distance between the re-
quester of the data and the L2 home bank that owns the data could
be minimized, doing so could degrade the off-chip access locality
on the network, and vice versa. However, taking both on-chip and
off-chip data localization into account is not trivial. For example,
assuming that we have 4 MCs, then the first p data elements will be
mapped to MC1, and the next p data elements will be mapping to
MC2, and so on. Given the desired L2-to-MC shown in Figure 8a,
the off-chip accesses to the data elements whose home bank is con-
nected to Core 2 will be sent to MC2 instead of the desired one –
MC1.

An important question at this point is whether there always
exists a layout such that both the on-chip and off-chip accesses
can be localized. Our answer to this question is no. Let addr(~a)
represent the virtual address of a data element ~a. Then, the home
bank that issues the off-chip accesses to ~a, denoted as idHB , can

5 We bind each thread to a core through a system call to ensure that the order
of the cores is consistent with the order of memory controllers in the target
two-dimensional grid (see Figure 2a).

be expressed as:
idHB = addr(~a)/p%N, (4)

where p is the cache block size and N is the total number of cores
on the network. Similarly, the MC to which request for ~a is sent,
denoted as idMC , can be expressed as:

idMC = addr(~a)/p%N ′, (5)
where N ′ is the total number of memory controllers. Based on
Eqs. (4) and (5), we have N ∗ δ1 + idHB = N ′ ∗ δ2 + idMC =
addr(~a)/p. In the L2-to-MC mapping shown in Figure 8a, we
have N = 64, N ′ = 4, which indicates that 4 ∗ (16 ∗ δ1 −
δ2) = idMC − idHB , where δ1 and δ2 are integers. To satisfy
this equation, idMC and idHB must always be multiples of 4,
which may not be the case. To solve this problem, our strategy
is to generate a localized layout for the on-chip accesses first,
and then try our best to localize the off-chip accesses. One could
also first generate the layout localized for off-chip accesses and
then try to localize the on-chip accesses as much as possible.
Specifically, we first generate a layout with the property that most
of the data accesses are local, i.e., home bank of each data block is
the one connected to the core by which this data block is accessed.
Similar to case of the private L2 based system, we transform an
array reference (· · · , rv, · · · , rn)T into the form of (· · · , rn/p,
R′(rv), rn%p)T , where R′(rv) is a set of transformed indices
that can be used to identify the L2 bank, and can be expressed as
R′(rv) = (rv/b)%N . After this transformation, every consecutive
p data elements will be accessed by the same core in a round-robin
fashion.

We then optimize the off-chip accesses under this new layout as
follows. If a data element resides on a memory address/location
where the mapped MC is not adjacent to the desired MC, we
skip this address and move that data element to the next closest
memory address such that the mapped MC is adjacent to the desired
MC and all the data elements originally at or beyond this address
will be moved forward accordingly. This requires us to replace
the original reference ~a = (· · · , rn/p, R′(rv), rn%p)T with ~a′

where: ~a′ = ~a + (0, · · · , 0, δ ∗ p)T . Here, δ is a counter that will
be inserted at the loop level where the target array is accessed. It
will be increased by 1 (i.e., δ = δ + 1) if idMC(~a) ∈ C, where
idMC(~a) gives the desired MC for ~a, and C is the set of memory
controllers that are not adjacent to this MC. Figure 9(c) gives the
code transformed using our layout customization.
Page Interleaving: If the page-interleaving (of physical address
across MCs) is adopted, one can still apply the optimization scheme
discussed so far by simply changing p to the page size. However,
there is one additional problem that needs to be addressed: now
the bits used for memory controller selection are modified by the
OS. Therefore, the compiler-guided layout transformation scheme
discussed so far cannot directly enforce the desired Data-to-MC
mapping. Instead, we need the OS to be involved (by changing
the existing page allocation policy). Figure 12 shows an example
where, after layout transformation, with an assist from the OS, the
data elements accessed by the same set of cores (marked using the
same texture) are assigned to the physical pages mapped to the
same memory controller.

In the modified page allocation policy, which can be imple-
mented by using madvise() in Linux, when assigning a physical
address space to a page with the given virtual address, we require
the assigned physical address to belong to the desired memory con-
troller. For example, in Figure 12, assuming that we only have two
memory controllers, the data elements in the first memory chunk
(page) should be mapped to the physical addresses whose Page-
to-MC mapping bit (see Figure 5) will be set to 0, and the data
elements in the second memory chunk (page) should be mapped to
the physical addresses whose Page-to-MC mapping bit will be set
to 1. In other words, the modified page allocation algorithm assigns

136

Algorithm 1 Layout_Transformation
INPUT: Granularity: page/cache block, L2 cache attribute: shared/private, Desired

L2-to-MC Mapping
OUTPUT: Data references with optimized data layout
1: //single reference function
2: function DATA-TO-CORE-MAPPING(access matrix A, u, v)
3: B ← A− uthcolumn
4: BT~gTv = 0

5: Blower ← Gaussian_Elimination(BT)

6: ~gTv ← Forward_Substitution(Blower~g
T
v = 0)

7: (~gT1 , ~g
T
2 , ..., ~g

T
n)← Unimodular_Layout_Transformation(~gTv)

8: U ← (~gT1 , ~g
T
2 , ..., ~g

T
n)T

9: if det(U) !=±1 then
10: //Check if U is unimodular
11: H ← Hermit_Normal_Form(U)

12: U ← H−1U
13: end if
14: return U
15: end function
16: for All arrays from the first to the last do
17: Choose one array as A
18: if multiple_references then
19: //Multiple references(A1, A2, ..., Ak)
20: for i from 1 to k do
21: nj ← Total access number of each reference
22: s← Number of references with same Ai

23: W (Ai)←
∑s

j=1 nj

24: end for
25: findAi with maximumW (Ai)
26: U = DATA-TO-CORE-MAPPING(Ai)
27: else
28: U = DATA-TO-CORE-MAPPING(A)
29: end if
30: ~r

′
← U~r

31: ~r ← ~r
′

32: //~r = (..., rv, ..., rn)
T

33: //now we have the reference ~r optimized for on-chip access and we begin
layout customization

34: if cache block then
35: p← block_size
36: k ←MCs per cluster
37: //From user input L2-to-MC Mapping
38: if private L2 then
39: R(rv)← (((rv/b)/(ny ∗ cy ∗ nx))%cx,

((rv/b)/ny)%cy)

40: ~r ← (..., R(rv), ..., rn)
T

41: Permutation and Strip_mining(~r)
42: ~r ← (..., rn/(k ∗ p), R(rv), rn%(k ∗ p))T
43: else if Shared L2 then
44: R

′
(rv)← (rv/b)%N

45: ~r ← (..., R
′
(rv), ..., rn)

T

46: Permutation and Strip_mining(~r)

47: ~r ← (..., rn/p,R
′
(rv), rn%p)

T

48: //optimize off-chip access
49: for Each reference ~a = (..., rn/p,R

′
(rv), rn%p)

T do
50: δ ← 0
51: while idMC(~a) ∈ C do
52: δ ← δ + 1
53: end while
54: ~a

′
← ~a+ (0, ..., 0, δ ∗ p)T

55: end for
56: end if
57: else if page then
58: p← page_size
59: OS-assisted customization which is similar with cache line customization
60: end if
61: end for

physical pages in a round-robin fashion to guarantee the desired
distribution of pages across memory controllers.

At this point, there are two important issues that need to be
clarified. First, generating virtual memory layout at the beginning
simplifies the modification to the page coloring algorithm. This is
because, after this transformation, we can easily obtain the desired
Page-to-MC mapping bits for each data element based on the Data-

to-MC mapping, which is indicated by the Data-to-Core mapping
and L2-to- MC mapping. Second, if the memory space attached to
the specified MC is full, an alternate MC is selected and the page
is placed into the space managed by that controller. Consequently,
our approach does not increase the number of page faults, i.e., the
available physical memory space is fully utilized.

5.4 Handling Indexed Array Accesses
As stated earlier, our approach mainly targets application programs
with affine references. However, in many data-intensive applica-
tions, there are data array accesses made through index arrays. For
example, in hpccg, the core computation includes a sparse matrix-
vector multiplication (SpMV), and similarly, in minimd, we have
indexed array accesses. Our current implementation can handle
such codes as follows. The idea is first to use profiling and ex-
tract the "dense access patterns" of the indexed references (e.g., in
SpMV, the access pattern to the array in two-dimensional repre-
sentation). In the case of CRS representation for example, this is
done by determining the contents of the row-pointer an column-
index arrays. Then, we generate an affine function (with enclosing
loops) that approximates the addresses generated by the reference.
This approach, whose details are beyond the scope of this work, can
result in over-approximation (the resulting affine expression gener-
ates more addresses than the original – indexed array – reference)
or under-approximation (and in fact increasing the number of en-
closing loops can increase the accuracy of the approximation). Still,
we can use the result of this approximation to perform our data lay-
out restructuring, as over- or under-approximation does not create
a correctness issue but can only lead to a performance issue. We
want to make it clear however that, for some references, the inac-
curacy resulting from approximation can be very bad (e.g., more
than 30%), in which case our implementation simply does not op-
timize those references.

5.5 Algorithm
The formal algorithm for our data layout transformation is given as
Algorithm 1, which changes the data layouts of arrays and modifies
the array references in the code. In optimizing the layout of each
array, we consider all the references to it in all loops in the program.
The outermost loop (line 16) iterates over all arrays in the program.
Lines 17-32 capture the algorithm for determining Data-to-Core
Mapping, which calls the function DATA-TO-CORE-MAPPING
(defined in lines 1-15). In this phase, we try to find a set of parallel
hyperplanes (on the data space of the arrays) orthogonal to the data
partitioning dimension (defined in Section 5.2 or specified by the
user) such that, most of the data elements in a partitioned data
block (formed by those hyperplanes) are accessed by the same
thread/core. In this way, the data elements touched by different
threads/cores are isolated in the transformed data space.

Lines 34-60 illustrate our algorithm of layout customization.
In this phase, permutation and strip-mining can be used multiple
times. In the case of private L2 cache (lines 38-42), we change
the transformed array indices (by using permutation and strip-
mining) such that the data elements accessed by each thread/core
are mapped to the cores in the same cluster in a round-robin fashion
(recall that each cluster corresponds to a memory controller). In
other words, these data elements are local to the threads/cores (in
the same cluster) that uses them for computation. In case of shared
L2 cache (lines 43-56), in addition to the transformation applied
to the private-L2 case, we further change the layout to ensure that
the data elements are NOT mapped to the cluster that is far from
the threads/cores that use these data for computation (note that, in
shared-L2 case, mapping all the data to the threads/cores in the
same cluster that uses them for computation is impossible).

137

It is important to note that, in our implementation, there is no
reason why the case of references (to the same array) from differ-
ent nests should be treated any different than the case of references
in the same nest. This is because our approach simply attaches a
weight to each layout preference, and this weight is a function of
the iteration count of the nests that enclose the corresponding refer-
ences. As a result, if, say, two references to the same array in differ-
ent nests prefer the same data layout, we increase the weight of the
corresponding "layout preference" accordingly. Since the weights
are accumulated (for each layout preference), our algorithm does
not care which nest(s) they are originating from.

6. Experiments
6.1 Experimental Setup and Applications
The proposed layout optimization is implemented using the Open64
infrastructure [12] version 4.2.4, as a source-to-source translator.
During the compilation process, a loop transformation-guided by
array dependence analysis restructures the intermediate code for
improving both parallelism and data locality (cache performance).
Our proposed scheme is inserted as an additional pass after this
transformation and function inlining.

Apart from the user input that specified L2-to-MC mapping, the
entire approach is fully automated within the compiler. If the user
does not specify an L2-to-MC mapping, we use, by default, the
mapping given in Figure 8(a). All the experiments are carried out
using the GEM5 simulator [13], with our modified Linux kernel
that implements the customized page allocation policy explained
in Section 5.3.

The important simulation parameters and their default values
are given in Table 1. We present results from a set of multithreaded
programs from SPECOMP [14] and Mantevo suites [15]. We used
all applications from SPECOMP except equake, we could not ex-
ecute in our simulator due to a memory error. For the SPECOMP
applications, we used the large input sets. The input sizes of the re-
maining applications ranged between 124.1 MB and 1.9 GB. In the
default configuration (Table 1), all these applications run one thread
per core and, in each experiment, we run only one multithreaded
application (later we present results with different combinations of
our applications). Also, our default L2-to-MC mapping is the one
shown in Figure 8a, with private L2s (later we present results with
shared L2 as well).

Table 2 gives for each benchmark the percentage of arrays that
have been optimized using our approach, as well as the percentage
of array references that have been satisfied by the layout transfor-
mation chosen for the corresponding array.6 It should also be men-
tioned that, while the fraction of data shared by two or more threads
is not very high in these applications (averaging on 14%), accesses
to the shared data constitute a much larger fraction (around 31%)
of the total data accesses. fma3d and minighost are two applica-
tions with the highest inter-core data sharing. As will be discussed
later, this is why they prefer mapping M2 (in the Figure 8b) over
the default one (M1).

It is important to emphasize that both the original application
programs as well as their optimized versions (using our approach)
are compiled with the same node compiler using the highest level
of optimization, enabling basically all major loop restructurings
for maximizing cache performance such as loop permutation and
iteration space tiling. Further, we observed in our experiments that,
the impact of our approach on the last-level cache misses was
within 1%. Also, the results presented in the rest of this section
include all the overheads brought by our layout transformation

6 The reason why we could not transform some arrays is because they use
pointer accesses or index array accesses which could not be approximated
by our approach.

Table 1: The simulated configuration.

Parameter Default Value
Cores and Caches

Processor two-issue, SPARC processor
Data/Instr. L1 16 KB (per node), 64 byte lines, 2 ways

L2 256KB (per node), 256 byte lines, 16 ways
L1, L2 and per hop latencies 2, 10, 4 respectively

NoC
Size 8× 8 two-dimensional mesh

Delays and Routing 16B links, 2-cycle pipeline, XY-routing

Memory System
Number of Memory Controllers 4 [placed into 4 corners of the mesh]

Scheduling Policy FR-FCFS [16]
Capacity 4GB

Device Parameters Micron MT47H64M8 DDR3-1600 timing
parameters [17], 4 banks/device,
16384 rows/bank, 512 columns/row

Row Buffer Size 4KB [same as page size]
4 active row buffers per DIMM

Optimization Parameters
Interleaving Unit 4KB [same as page size]

or 256 Bytes [same as L2 cache line size]
L2-to-MC mapping as shown in Figure 8a

Table 2: Percentage of arrays optimized (second column) and array
references satisfied (third column).

wupwise 95% 76%
swim 92% 79%
mgrid 88% 80%
applu 95% 81%
galgel 83% 76%

art 91% 83%
ammp 55% 69%

fma3d 91% 78%
apsi 96% 82%

gafort 85% 80%
minighost 76% 83%

hpccg 68% 76%
minimd 88% 84%

8

(%
)

6

cc
e
ss
e
s

2

4

o
n
o
f
A
c

0

2

F
ra
ct
io

3 4 5 6 7
0 1

2
3
4

0
1

2 3 44
5
6
7

(a) Before optimization.

8

(%
)

6

ce
ss
e
s

2

4

n
o
f
A
c

0

2

F
ra
ct
io

3 4 5 6 7
0
1
2
3
4

0
1

2
3 44

5
6
7

(b) After optimization.
Figure 13: Impact of off-chip access localization. The bars capture
the accesses to MC1 in Figure 8a.

(e.g., those due to strip-mining and padding). We observed that
these overheads constitute about 4% of the total execution time.

6.2 Results with Proposed Schemes
Impact of Off-Chip Access Localization: We first present two
representative maps to illustrate how our approach changes the off-
chip traffic destined to a memory controller. Our objective is to see
how much off-chip access localization our approach achieves in
practice. For this experiment, we focus on one of our applications,
apsi. We present, in Figures 13a and 13b, the distribution of off-
chip accesses, for the controller MC1 shown in Figure 8a. In both
the graphs, the vertical axis plots the fraction of off-chip accesses
made to this controller from each of our 64 nodes over the entire
execution. The coordinates of the nodes in our two-dimensional
grid are given by the remaining two axes in Figure 13. The first
graph is for the original case and the second one is for the case when
using our proposed strategy. The most important observation from
these results is that, while in the original case the off-chip access
requests to a memory controller come from all over the chip, in
the optimized case, the accesses to the same memory controller are
highly skewed towards the nearby cores. More details on requested
distribution can be found in our technical report [18].

138

0

20

40

60

80

R
e

d
u

ct
io

n
 (

%
)

network latency (on-chip references) network latency (off-chip references)
memory latency execution time

Figure 14: Results with page interleaving of physical ad-
dresses.

0

20

40

60

80

100

on-chip (original) on-chip (optimized) off-chip (original) off-chip (optimized)

C
D

F

Number of Links

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 15: CDF of distances (in terms of the number of links)
for both on-chip and off-chip accesses.

0

20

40

60

80

R
e

d
u

ct
io

n
 (

%
)

network latency (on-chip references) network latency (off-chip references)
memory latency execution time

Figure 16: Results with cache-line interleaving of physical
addresses.

0

10

20

30

40

R
e

d
u

ct
io

n
 In

 E
xe

cu
ti

o
n

C

yc
le

s
(%

)

M1 M2

Figure 17: The execution time improvements with the map-
pings shown in Figure 8, under cache-line interleaving.

0
15
30
45
60
75
90

A
ve

ra
ge

 B
an

k
Q

u
e

u
e

U

ti
liz

at
io

n
 (

%
)

Figure 18: The bank queue utilization for our applications
when using mapping M1 (Figure 8a).

0

10

20

30

40

R
e

d
u

ct
io

n
 in

Ex

e
cu

ti
o

n
 C

yc
le

s
(%

) P1 P2 P3

Figure 19: Results with different MC placements.

0

10

20

30

40

R
e

d
u

ct
io

n
 in

Ex

e
cu

ti
o

n
 C

yc
le

s
(%

)

4 8 12

Figure 20: Sensitivity to the number of MCs.

0

10

20

30

40

R
e

d
u

ct
io

n
 in

Ex

e
cu

ti
o

n
 C

yc
le

s
(%

)

4x4 4x8 8x8

Figure 21: Sensitivity to the core count.

0

20

40

60

80

R
e

d
u

ct
io

n
 (

%
)

network latency (on-chip references) network latency (off-chip references)
memory latency execution time 83.1

Figure 22: Evaluation of shared L2.

0

5

10

15

20

25

R
e

d
u

ct
io

n
 in

 E
xe

cu
ti

o
n

C

yc
le

 (
%

)

Figure 23: The results comparing the first-touch policy to our
approach.

0

10

20

30

40

1 2 4 1 2 4

page interleaving cache line interleaving

R
e

d
u

ct
io

n
 in

 E
xe

cu
ti

o
n

C

yc
le

s
(%

)

Number of Threads per Core

wupwise swim mgrid applu galgel art ammp
fma3d apsi gafort minighost hpccg minimd average

Figure 24: Impact of the number of threads per core.

0
2
4
6
8

10
12
14

w1 (wupwis+
hpccg)

w2 (mgrid+
minimd)

w3 (applu+
minighost)

w4 (art+
ammp)

w5 (apsi+
wupwise+

galgel+
fma3d)

w6 (swim+
mgrid+

minimd+
gafort)

Im
p

ro
ve

m
e

n
t

in
 W

e
ig

h
te

d

Sp
e

e
d

u
p

 (
%

)

page interleaving cache line interleaving

Figure 25: Evaluation of multiprogrammed workloads.

139

Performance Improvement: The impact of these localized ac-
cesses on application performance is quantified in Figure 14 (in
the case of page-level interleaving). In this bar-chart, we present
four results for each application, normalized to the original exe-
cution. The first bar gives the reduction in the network latency of
on-chip accesses; the second bar captures the reduction in the net-
work latency of off-chip accesses; the third bar gives the memory
latency reduction for off-chip accesses (as a result of the reduction
in queuing latency); and the last bar shows the reduction in exe-
cution time. The average improvements in these four metrics are
12.1%, 62.8%, 41.9% and 17.1%, in that order. While these sav-
ings are lower than the savings achieved by the optimal scheme de-
scribed in Section 2, they still represent significant improvements,
clearly showing that optimizing for off-chip accesses can be very
important in NoC-based manycore systems.

To explain the improvements in on-chip network latencies, Fig-
ure 15 plots the CDF of the number of links traversed by on-chip
and off-chip requests in both the original and optimized cases when
considering all applications. Specifically, a bar corresponding to
(x, y) in this graph indicates that y% of the requests (messages)
traverses x or fewer links. One can make two important observa-
tions from this bar-chart. First, our approach reduces the number
of links traversed by off-chip memory accesses significantly. For
example, while in the original execution, only 22% of the requests
use 4 links or less, in the optimized case the corresponding figure is
31% (i.e., more messages use fewer links). Clearly, one can expect
this reduced number of links (per request) to reduce both off-chip
and on-chip access latencies. However, when we look at the on-
chip requests, the picture we see is different. More specifically, our
approach does not have significant impact on the distance traveled
by on-chip requests. Therefore, one can conclude that the improve-
ments on on-chip access latencies (plotted in Figure 14) are mostly
due to the reduction in network contention.
Evaluation of Cache-Line Interleaving: We next present results
collected when the physical addresses are interleaved across cores
at a cache line granularity. In Figure 16, all bars are normalized
with respect to the case where the same granularity physical mem-
ory distribution is used without our approach. As in the case of
Figure 14, the first bar in this plot gives the reduction in the net-
work latency of on-chip accesses; the second bar captures the re-
duction in the network latency of off-chip accesses; the third bar
gives the memory latency reduction for off-chip accesses; and the
last bar shows the reduction in execution time, and the average im-
provements are 13.6%, 66.4%, 45.8% and 20.5%, in that order. In
the rest of our experiments, unless stated otherwise, we use cache-
line interleaving. Note that, while our percentage savings are better
with cache-line interleaving, in the original codes, page interleav-
ing generates better results than cache-line interleaving (3% on av-
erage).
Results with an Alternate L2-to-MC Mapping: Figure 17 gives
the execution time improvement results with the mappings shown
in Figure 8, where M1 and M2 in Figure 17 correspond to the map-
pings illustrated in Figure 8a and Figure 8b, respectively. It can be
seen that, in most of our applications, going from M1 to M2 results
in a reduction in our savings. This is because in these applications,
off-chip access localization is more important than high levels of
memory-level parallelism (MLP), and the banks connected to an
MC are able to satisfy the memory level parallelism demand of a
cluster (of 16 cores). In fma3d and minighost however, going from
M1 to M2 generated better results. This is because these two ap-
plications exhibit much higher memory parallelism demand com-
pared to the remaining ones. To explain this better, we present in
Figure 18, the bank queue utilization (occupancy) for our applica-
tions when using M1 mapping (a higher value indicates a larger
number of request waiting in the queue to be serviced). As can

be observed, the utilization numbers are much higher with these
two applications, compared to the remaining ones. Consequently,
in these two applications, allowing a core to access more mem-
ory controllers (more banks) helps, though doing so increases the
distance-to-memory controller for some requests. As a result, we
can say that, assuming that the number of channels per memory
controller is sufficiently large, M1 mapping, which associates each
core with a single memory controller, should perform well in most
cases.
Results with Different MC Placements: As pointed out in [19],
modern flip-chip packaging allows sufficient escape paths from al-
most anywhere on the chip. This enables designers to explore dif-
ferent placements of memory controllers within the on-chip net-
work. So far, we used the MC placement depicted in Figure 8a.
Figure 26a and Figure 26b show two alternate MC placements (all
with four MCs). The results with these placements are plotted in
Figure 19 (P1, P2 and P3 correspond to the placements in Fig-
ure 8a, Figure 26a and Figure 26b, respectively). One can observe
from these results that placement P2 generates slightly better re-
sults than others (an average improvement of about 20.7%), mainly
because the average distance-to-controller is expected to be lower
under this placement.
Results with Different MC Counts: To eliminate the potential ef-
fects that could come from the different memory controller place-
ments, we increase the number of memory controllers based on the
configuration depicted in Figure 8a. The configurations tested are
shown in Figure 27a and Figure 27b, and have L2-to-MC mappings
similar to the one shown in Figure 8a. The results with these new
configurations are presented in Figure 20. We see that our approach
generates higher savings with larger MC counts. This is mainly be-
cause a larger number of controllers lead to better memory paral-
lelism within each cluster, which in turn increases the effectiveness
of our approach (as we are not hurt by a degradation in memory
level parallelism when off-chip accesses are localized).
Results with Different Core Counts: In Figure 21, we present
results with 4×4 and 4×8 manycore systems with four controllers
(one corner each, with the L2-to-MC mapping similar to Figure 8a).
The results with our default configuration (8 × 8) are reproduced
here for ease of comparison. We see an average improvement of
14% and 18% for the 4× 4 and 4× 8 configurations, respectively.
Results with Shared L2: Figure 22 shows the results collected
when the available L2 space is managed as a shared SNUCA cache
(with cache-line interleaving for both L2 and main memory). In
general, the results shown here are similar to those given earlier in
the case of private L2s (Figure 16). However, our approach achieves
better improvements with shared cache, except in two benchmarks
(fma3d and minighost). The average execution time improvement
in the shared L2 case is about 24.3%. Overall, these results along
with those presented earlier show that our approach works very
well under both private and shared last-level caches.

6.3 Comparison against the First-Touch Policy
So far, we evaluated our memory layout optimization approach
under two hardware-based physical address interleaving schemes
(page based and cache line based). We now compare our compiler-
based approach to an OS-based first-touch policy [20]. In this
policy, we still adopt the cluster concept but a page is allocated
from an MCx if the first access to the page is from a node in cluster
x. Figure 23 plots the average improvements our scheme brings
(used along with page interleaving) over this first-touch policy. We
see that, on average, our scheme generates 12.3% improvement
over the first-touch policy. This is because the first-touch policy is
essentially a greedy approach and assumes that most of the accesses
to a given page in the entire execution would be from the same
cluster where the first access to that page is made. According to

140

X

YY

(a)

X

YY YY

(b)
Figure 26: Different MC placements with the
same L2-to-MC mapping.

X

YY

(a)

X

Y YY Y

(b)
Figure 27: Configurations with 8 and 12 MCs.

our results, this assumption does not hold except in three of our
applications (wupwise, gafort and minimd).

6.4 Results with Varying Thread Counts per Core and
Multiprogrammed Workloads

Recall that, in the results presented so far, we used one (mul-
tithreaded) application at a time, and ran always one thread per
core. In this section, we report results with other options. Figure 24
gives the results when using more than 1 thread per core in execut-
ing a multithreaded application. The results shown clearly indicate
that our approach brings higher improvements when the number of
threads per core is increased. This is primarily because the degree
of on-chip network contention increases dramatically, in the origi-
nal case (without our optimization), when we have more threads, on
the same core, of an application with long NoC distances. Our op-
timization is able to reduce the duration of this intensive contention
by reducing the distance to data. So, for example, in minighost –
under cache-line interleaving – our execution time saving reached
around 20% when using two threads per-core. Figure 25 plots the
results when we execute a multiprogrammed workload of multi-
threaded applications. It is important to make it clear that our ap-
proach is compiler based and does not do anything specific for mul-
tiprogrammed workloads. The goal in this section is just to quan-
tify the impact of our approach when co-executing multiple appli-
cations in the same NoC-based manycore system. The x-axis in
Figure 25 gives the workloads we formed and ran, and the y-axis
shows the weighted speedup [21], a frequently-used metric for eval-
uating the performance of multiprogrammed workloads. The main
observation from these results is that the improvements we achieve
change between 5.4% and 13.1%, depending on the applications
in the workload. Clearly, integrating our scheme with an OS-based
approach could increase these savings further.
7. Related Work
Most of the prior compiler-directed layout transformation are ori-
ented towards improving cache performance. Leung and Zahor-
jan [8] propose array restructuring to improve the spatial locality
in nested loops. O’Boyle and Knijnenburg [22] describe a unify-
ing framework for non-singular layout transformations. Both these
works and our work employ data transformation matrices. How-
ever, while these prior works focus on improving data locality
(cache performance), we focus on improving off-chip accesses
(cache misses). Therefore, our work is also orthogonal to these
works. Further, since our desired transformation matrix U is only
characterized by its v-th (data partitioning dimension) row vector,
one can further take the data locality into account by adding addi-
tional constraints on U .

Franz and Kistler [23] increase cache utilization of pointer-
based programs by splitting data objects in memory. Rivera and
Tseng [11] introduce padding to eliminate conflict misses. Ander-
son et al [10] propose an integrated computation parallelization and
layout transformation framework, and use strip-mining and permu-
tation to improve data locality. We employ these layout transfor-
mation techniques to address different problems. In our context,
padding is used to align the based address of inter-array and intra-
array to ensure each data element has the desired virtual address
in the transformed layout; and strip-mining and permutation are

used to ensure that the off-chip accesses can be sent to the desired
memory controller. Since our goal is different from these works,
we generate different transformation formulas.

Bugnion et al [24] present a compiler-directed page coloring
strategy to eliminate conflict misses in parallel application. Jin et al
[25] propose a distributed L2 cache management approach through
page-level data to cache slice mapping in a future processor chip
comprising many cores. Cho and Jin [26] considered an OS-level
page allocation approach to managing on-chip L2 caches. Ros et
al [27] propose a distance-aware round-robin mapping policy, an
OS-managed policy which addresses the trade-off between cache
access latency and number of off-chip accesses. Our page alloca-
tion algorithm is simpler than these works since we take advantage
of the layout transformation to simplify the job for the OS. We
also want to emphasize that, the page allocation scheme in our sec-
ond component is only a complement to the first component. Lu et
al [5] develop a layout transformation for enhancing NUCA-based
chip multiprocessors by reducing non-local L2 accesses for local-
izable computations. There are two differences between our work
and this work. First, they focus on on-chip accesses, while our goal
is to investigate the impact of off-chip accesses on on-chip network.
Second, we handle both shared L2 and private L2 caches while the
their work targets only shared L2. Consequently, the theory we de-
veloped is entirely different from theirs.

There has been a large body of prior work addressing the prob-
lem of data distribution on large-scale NUMA systems [28–30].
Marathe et al [28] present a profile-based memory placement
methodology. Navarro et al [29] discuss a compiler-based scheme
to find the iteration and data decompositions that minimize com-
munication and load imbalance overheads in parallel programs
targeted at NUMA architectures. Majo and Gross [30] study the
data distribution of a program to the individual and multiple data
access patterns on NUCA. As opposed to the prior NUMA-oriented
work, our approach handles the case with shared on-chip caches,
a unique characteristic of multicores. Also, in prior NUMA-based
work, there are typically two locality domains: local versus global.
In contrast, in our target NoC-based system, there are "degrees of
locality", depending on the distance between the requesting core
and the target memory controller, which we exploit. Finally, prior
NUMA based work targets "inter-node optimization", whereas our
work targets "intra-node optimization", where a "node" in this con-
text is an NoC based multicore.

In contemporary NUMA systems, congestion on memory con-
trollers and interconnects are the main performance bottlenecks.
Observing this, Dashti et al [31] develop an OS-based memory
placement algorithm that mainly targets traffic congestion. The pro-
posed algorithm uses data replication and data migration, and goes
beyond conventional locality optimizations normally employed in
traditional NUMA systems. Such OS-based techniques are com-
plementary to compiler-based approaches (such as ours), and in
principle, best improvements can be obtained by coordinating the
compiler and OS based approaches.

Recent architecture-based works involve memory scheduling of
off-chip accesses (e.g. [7, 16, 32]), which are orthogonal to our
compiler based approach. Das et al [33] propose new application-
to-core mapping policies that reduce the inter-application inter-

141

ference in the on-chip network and memory controllers. How-
ever, they focus on multiprogrammed workloads with only pri-
vate caches, and their approach is purely architectural. Studies on
memory controller placement for NoC-based multicores include
the works from [19] and [34]. Abts et al [19] show that intelli-
gent memory controller placement and routing strategy can help
reduce the contention (hot spots) in the on-chip network and lower
the variance in reference latency. Xu et al [34] investigate the op-
timal placement of multiple memory controllers in an 8 × 8 NoC
and propose a generic “divide and conquer" method for solving the
placement of memory controllers in large NoCs. These studies are
largely orthogonal to the main focus of our work.

8. Conclusions
To our knowledge, this is the first compiler-based work that targets
optimizing on-chip network behavior of off-chip accesses in both
private L2s and shared L2 based manycores. Specifically, it min-
imizes the distance between the requester core/node and the tar-
get memory controller. Doing so brings two benefits in NoC: first,
off-chip data accesses are expedited as they travel shorter distances
over the on-chip network, and second, on-chip data access latencies
are also reduced as, after the optimization, they are less affected
by off-chip accesses. Expediting off-chip requests in the on-chip
network also reduces their wait latencies in the memory system.
Our results with private L2s (Shared L2), indicate an average of
20.5% (24.3%) saving in execution time. The corresponding exe-
cution time improvement, in the case of shared L2 is about 24.3%.
Acknowledgments
We thank Prof. Alexandra Fedorova for her feedback and com-
ments on the paper. This work is supported in part by NSF grants
1213052, 1205618, 1439021, 0963839, and 1017882, as well as a
grant from Intel.

References
[1] L. Benini and G. D. Micheli, Networks on Chips: Technology and

Tools. Elsevier Inc., 2006.
[2] J. Lira, C. Molina, R. N. Rakvic, and A. González, “Replacement tech-

niques for dynamic NUCA cache designs on CMPs,” J. Supercomput.,
2013.

[3] M. Chaudhuri, “PageNUCA: Selected policies for page-grain locality
management in large shared chip-multiprocessor caches,” Proc. of
HPCA, 2009.

[4] B. M. Beckmann and D. A. Wood, “Managing wire delay in large
chip-multiprocessor caches,” Proc. of MICRO, 2004.

[5] Q. Lu, C. Alias, U. Bondhugula, T. Henretty, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, P. Sadayappan, Y. Chen, H. Lin, and T.-
f. Ngai, “Data layout transformation for enhancing data locality on
NUCA chip multiprocessors,” Proc. of PACT, 2009.

[6] M. T. Kandemir, Y. Zhang, J. Liu, and T. Yemliha, “Neighborhood-
aware data locality optimization for NoC-based multicores,” Proc. of
CGO, 2010.

[7] Y. Kim, D. Han, O. Mutlu, and M. Harchol-balter, “ATLAS: A scal-
able and high-performance scheduling algorithm for multiple memory
controllers,” Proc. of HPCA, 2010.

[8] S.-T. Leung and J. Zahorjan, “Optimizing data locality by array re-
structuring,” Technical Report, Dept. of Computer Science and Eng.,
Univ. of Washington, 1995.

[9] A. Schrijver, Theory of linear and integer programming. John Wiley
& Sons, Inc., New York, NY, USA, 1996.

[10] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam, “Data and com-
putation transformations for multiprocessors,” Proc. of PPOPP, 1995.

[11] G. Rivera and C. Tseng, “Data transformations for eliminating conflict
misses,” Proc. of PLDI, 1998.

[12] “Open64,” http://www.open64.net.
[13] “Gem5,” http://gem5.org.
[14] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones,

and B. Parady, “SPEComp: A new benchmark suite for measuring
parallel computer performance,” OpenMP Shared Memory Parallel
Programming, 2001.

[15] “Mantevo,” http://mantevo.org/.
[16] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread

cluster memory scheduling: Exploiting differences in memory access
behavior,” Proc. of MICRO, 2010.

[17] “Micron DDR3 SDRAM Part MT41J128M8,” Micron Technology
Inc., 2007.

[18] W. Ding, X. Tang, M. T. Kandemir, Y. Zhang, and E. Kultursay,
“Optimizing off-chip accesses in manycores,”

[19] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and M. H. Lipasti,
“Achieving predictable performance through better memory controller
placement in many-core CMPs,” Proc. of ISCA, 2009.

[20] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating sys-
tem support for improving data locality on cc-numa compute servers,”
Proc. of ASPLOS, 1996.

[21] T. Snavely, “Symbiotic jobscheduling for a simultaneous multi-
threaded processor,” Proc. of ASPLOS, 2000.

[22] M. O’Boyle and P. Knijnenburg, “Non-singular data transformations:
definition, validity and applications,” Proc. of ICS, 1997.

[23] M. Franz and T. Kistler, “Splitting data objects to increase cache uti-
lization,” tech. rep., University of California, Department of Informa-
tion and Computer Science, 1998.

[24] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S.
Lam, “Compiler-directed page coloring for multiprocessors,” Proc. of
ASPLOS, 1996.

[25] L. Jin, H. Lee, and S. Cho, “A flexible data to L2 cache mapping
approach for future multicore processors,” Proc. of MSPC, 2006.

[26] S. Cho and L. Jin, “Managing distributed, shared L2 caches through
os-level page allocation,” Proc. of MICRO, 2006.

[27] A. Ros, M. Cintra, M. E. Acacio, and J. M. Garcia, “Distance-aware
round-robin mapping for large NUCA caches,” Proc. of HiPC, 2009.

[28] J. Marathe, V. Thakkar, and F. Mueller, “Feedback-directed page
placement for CC-NUMA via hardware-generated memory traces,”
JPDC., 2010.

[29] A. Navarro, E. Zapata, and D. Padua, “Compiler techniques for the
distribution of data and computation,” JPDS, 2003.

[30] Z. Majo and T. R. Gross, “Matching memory access patterns and data
placement for numa systems,” Proc. of CGO, 2012.

[31] F. G. L. L. Q. R. Dashti, Fedorova, “Traffic management: A holistic
approach to memory placement on numa systems,” Proc. of ASPLOS,
2013.

[32] Y. Ishii, M. Inaba, and K. Hiraki, “Unified memory optimizing archi-
tecture: Memory subsystem control with a unified predictor,” Proc. of
ICS, 2012.

[33] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi,
“Application-to-core mapping policies to reduce memory system in-
terference in multi-core systems,” Proc. of HPCA, 2013.

[34] T. Xu et al., “Optimal memory controller placement for chip multipro-
cessor,” Proc. of CODES+ISSS, 2011.

142

