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ABSTRACT
Continuously increasing dataset sizes of large-scale appli-
cations overwhelm on-chip cache capacities and make the
performance of last-level caches (LLC) increasingly impor-
tant. That is, in addition to maximizing LLC hit rates, it is
becoming equally important to reduce LLC miss latencies.
One of the critical factors that influence LLC miss latencies
is row-buffer locality (i.e., the fraction of LLC misses that
hit in the large buffer attached to a memory bank). While
there has been a plethora of recent works on optimizing row-
buffer performance, to our knowledge, there is no study that
quantifies the full potential of row-buffer locality and impact
of maximizing it on application performance.
Focusing on multithreaded applications, the first contri-

bution of this paper is the definition of a new metric called
(memory) row reuse distance (RRD). We show that, while
intra-core RRDs are relatively small (increasing the chances
for row-buffer hits), inter-core RRDs are quite large (increas-
ing the chances for row-buffer misses). Motivated by this,
we propose two schemes that measure the maximum poten-
tial benefits that could be obtained from minimizing RRDs,
to the extent allowed by program dependencies. Specifically,
one of our schemes (Scheme-I) targets only intra-core RRDs,
whereas the other one (Scheme-II) aims at reducing both
intra-core RRDs and inter-core RRDs. Our experimental
evaluations demonstrate that (i) Scheme-I reduces intra-core
RRDs but increases inter-core RRDs; (ii) Scheme-II reduces
inter-core RRDs significantly while achieving a similar be-
havior to Scheme-I as far as intra-core RRDs are concerned;
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(iii) Scheme-I and Scheme-II improve execution times of our
applications by 17% and 21%, respectively, on average; and
(iv) both our schemes deliver consistently good results under
different memory request scheduling policies.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles; C.1.2 [Processor
Architectures]: Multiple Data Stream Architectures (Mul-
tiprocessors)

General Terms
Performance, Design

Keywords
Multicores, memory scheduling, row-buffer locality, row reuse
distance

1. INTRODUCTION
With recent trends towards multicore systems and enor-

mous dataset sizes, the memory system is increasingly be-
coming a bottleneck [1–5]. Unfortunately, traditional opti-
mization techniques based on on-chip caches will have lim-
ited scope in coping with this memory bottleneck, simply
because the growth in dataset sizes far exceeds the growth
in on-chip cache capacities. Employing smart cache manage-
ment strategies [6–10] can provide a temporary relief (delta
improvement) but certainly not a long-term solution. In-
stead, to address this growing problem, solutions that con-
sider the entire path of data accesses (not just cache per-
formance) should be investigated. One of the components
of this path is the last-level cache (LLC) misses (off-chip
memory requests).
One of the critical factors that determine the performance

of LLC misses in modern main memory systems is row-buffer
locality, which refers to reusing data from a row-buffer, a
buffer that acts as a cache for the most recently accessed
memory row, as much as possible. There have been sev-
eral recent papers [11–15] that proposed hardware-based
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techniques to maximize row-buffer locality (row-buffer hits).
One popular memory-scheduling (reordering) scheme found
in current commercial systems is FR-FCFS [11, 12], which
gives priority to requests that target the current memory
row in the row-buffer over other requests, including the older
ones. More recent scheduling techniques [16–20, 36] try to
coordinate memory controllers to achieve better row-buffer
performance.
The row-buffer optimization techniques proposed in the

literature are mostly ad-hoc architectural schemes that use
different heuristics. One of the critical questions in this con-
text is to understand the potential and limits of maximizing
row-buffer performance. In other words, what are the max-
imum benefits one could expect from an ideal scheme that
maximizes row-buffer locality? Motivated by this observa-
tion, this paper makes the following main contributions:
•We define a novel metric called intra-core and inter-core

memory row reuse distance (RRD) and quantify it using
a set of 12 multithreaded benchmarks. This characteriza-
tion indicates that while intra-core RRDs are generally low,
leading to good row-buffer performance (locality), inter-core
RRDs are very high.
•We propose an ideal off-chip memory request (LLC miss)

scheduling policy oriented towards minimizing only intra-
core RRDs. The results collected through our experiments
clearly show that while minimizing intra-core RRDs does
bring performance improvements (17% execution time re-
duction on average), there is still scope for further improve-
ment.
• We next study the potential of a strategy that consid-

ers both intra-core and inter-core RRDs. The results show
that such an integrated approach generates a 26% better
row-buffer performance (in terms of row-buffer hits), result-
ing in about 21% improvement (on average) in execution
cycles. We also compared our schemes with two previous
schemes proposed to improve row-buffer locality. Our eval-
uation shows that our schemes greatly outperform these pre-
vious schemes in reducing the programs’ execution time.
Overall, our results motivate considering both intra-core

and inter-core RRDs in optimizing for memory system per-
formance. Furthermore, our results clearly show that if off-
chip memory requests could be reorganized on the core side,
we may not need sophisticated memory request schedulers
on the memory controller side. To our knowledge, this is the
first paper that formalizes the (memory) row reuse distance
concept, and demonstrates the impact of optimizing (mini-
mizing) it on the row-buffer locality and overall application
performance.
The remainder of this paper is organized as follows. The

next section gives an overview of modern memory systems
employed by current multicore/manycore architectures, and
explains the concept of row-buffer locality. Section 3 de-
scribes our experimental platform as well as application pro-
grams. Section 4 defines intra-core and inter-core RRDs and
quantifies them in the original application codes. Section 5
gives our two schemes oriented towards minimizing RRDs by
performing core-side memory request (LLC miss) schedul-
ing. Section 6 gives detailed evaluations of our schemes.
Section 7 discusses related work and Section 8 concludes
the paper.

2. DRAM BASICS AND ROW-BUFFER LO-
CALITY

In this section, we introduce the background on contem-
porary DRAM memory architectures. We base our intro-
duction on DDR3 SDRAM systems [21,22]. The discussion
below is also applicable to other DRAM memories that em-
ploy page-based memory architectures. We also provide an
introduction to the state-of-the-art memory request schedul-
ing schemes implemented in hardware.

2.1 SDRAM organization
Figure 1 shows the high-level view of a modern DRAM

hierarchy. A DRAM consists of one or more building blocks
called dual in-line memory modules (DIMMs). In each DIMM,
there are several SDRAM ICs that consist of multiple mem-
ory banks. Accesses to different memory banks can be ser-
viced in parallel. The actual elements that store memory
data are the DRAM cells, and they are organized as a two-
dimensional array in each bank. Read or write operations
need to provide a DRAM address that contains bank, row,
and column information in order to access the data in the
DRAM.
Accesses to the two-dimensional memory cell array take

place at the granularity of rows. To reduce the delay of
accessing the memory array, there is a structure called row-
buffer that can hold the data of an entire row of the memory
array. After the row address is asserted, the contents of
the accessed memory row are latched in the row-buffer so
that subsequent memory accesses to the same row can be
served promptly. Figure 2 illustrates how a memory access
is executed. In this example, the memory access needs to
read data from bank 1. First, the row address select signal
is asserted and the data in the same row across all banks
are selected (because a row is the basic accessing unit in
the memory array). Following that, the selected row data is
latched into the row-buffer. Next, the data can be read from
the row-buffer using the bank address and column address.
Consecutive memory accesses to data in the row-buffer are
called row-buffer hits. However, if the successive memory
requests access different rows, this will lead to a row-buffer
miss. In such cases, a new row of memory data needs to be
read into the row-buffer. Since memory accesses resulting in
row-buffer misses need to access the memory array itself, this
leads to longer access latencies. Row buffer locality refers to
repeated accesses to the contents of a given row when its
data is loaded into the row-buffer. Taking advantage of row-
buffer locality can improve the performance by eliminating
the cycles spent in accessing the memory arrays. A series of
memory requests that generate a high row-buffer hit rate is
said to have good row-buffer locality.

2.2 Impact of the row-buffer on memory ac-
cess latencies

Since the row-buffer serves as a cache to the memory bank
arrays, latencies of memory accesses are not uniform, de-
pending on whether the data is found in the row-buffer or
not. The memory access delay can be classified into three
categories:
• Row open with bank hit: The row-buffer is loaded with

data and the accessed data happens to be in the row-buffer.
In this case, the memory latency incurred is the minimum
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Figure 2: Accessing the memory data through a row-buffer.

and includes only the time to access the right column in the
selected bank.
• Row open with bank conflict: The row-buffer is loaded

with data but the desired data is not in the current row-
buffer. The current row needs to be closed first, and the
right bank needs to be precharged to load data into the row-
buffer. The resulting memory access latency is the highest
among all cases.
• Row empty: Row buffer is closed in this case and there is

no data in the row-buffer. In such a situation, a new row of
data need to be loaded into the row-buffer and then desired
data can be accessed using column address.

2.3 Row buffer management policies
Existing row-buffer management policies1 can be catego-

rized into two classes: open-page policy and close-page policy.
• Open-page policy. In this policy, the row-buffer is kept

open after every access. This policy is based on the specu-
lation that once a row of data is brought to the row-buffer,
the same row may be accessed again in the near future (as
a side effect of locality of data). If the next memory ac-
cess is made to the same row, its memory access latency can
be reduced to the minimum since the row is already active
and there is no need to access the memory array. However,
1Note that these policies just decide whether an accessed
row should be kept in the row-buffer for future accesses or
not, and are different from memory scheduling policies that
reorder requests to improve memory performance.

in the case that the next access is to a different row of the
same bank, the memory access latency is much larger, which
includes the latency to precharge the DRAM array, access
another row and perform the column access. In the open-
page policy, the memory access latency is not predictable
because a row-buffer hit can have much smaller delay than
a row-buffer miss.
• Close-page policy. In contrast to the open-page policy, a

DRAM page is closed immediately after every read or write
operation. This policy does not take advantage of data local-
ity to improve memory bandwidth, but it makes the latency
of each memory access predictable and has lower design com-
plexity. The close-page policy can have an edge over the
open-page policy in situations where random DRAM pages
are accessed frequently.
To summarize, a row-buffer management policy has an

influence on the design of the memory system. It directly
impacts several other design parameters, such as the mem-
ory address mapping and memory access scheduling in the
memory controllers. Since our goal in this work is to maxi-
mize row-buffer locality, we employ the open-page policy.

2.4 Memory access scheduling in the memory
controllers

Between processors and DRAM, there is an interface com-
ponent called memory controller. The main functionality
of memory controller is to orchestrate the DRAM banks,
buses and buffering queues to effectively serve the memory
requests from processors. Requests sent from the proces-
sors are first stored in the buffering queues. Based on their
memory address, the requests are dispatched to the DRAM
when there is bus bandwidth available. There is an impor-
tant logic called scheduler (implemented in hardware) in the
memory controller that decides the issue order of incoming
requests to memory based on performance and priority re-
quirements.
There have been various scheduling schemes proposed in

prior work to improve the efficiency and/or fairness of the
memory request scheduling. One of the well-known schedul-
ing algorithms is the First Come First Serve algorithm (FCFS).
In this policy, memory requests are serviced in their arriving
order. Note that this policy may not perform well in some
cases because it does not take advantage of the data local-
ity in the row-buffer. Instead, the First Ready–First Come
and First Serve algorithm (FR-FCFS) [11,12] was proposed
to optimize the memory throughput. This scheduling policy
gives the highest priority to ready memory requests. A mem-
ory request is considered ready when its data is available in
an open row. If there is no request that leads to a row-buffer
hit, the FR-FCFS then selects requests to serve in their ar-
riving order as in the case of FCFS. Serving ready requests
first can improve memory throughput by taking advantage
of the row-buffer locality and can maximize row-buffer hit
rate. The original FR-FCFS scheme was proposed to im-
prove the memory performance (by improving row-buffer
locality) in a single-core platform. Recently, there have
been several memory scheduling schemes proposed for multi-
core platforms to improve performance as well as fairness
[20,23–25]. For example, Nesbit et al. [23] propose a schedul-
ing scheme similar to the network fair-queuing strategies to
fairly allocate memory bandwidth among applications. Sim-
ilarly, in [24], a memory scheduling scheme is proposed to
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Table 1: Major platform parameters.
Parameter Default Value
Cores 32 (each is two issue)
Cache Line 64 bytes (for all caches)

L1 Cache 32KB per core (private), 8-way, 4
cycle-latency

L2 Cache 256KB per core (private), 8-way, 12
cycle-latency

L3 Cache 16MB shared, 32-way, 32 cycle-
latency (managed as SNUCA [43])

Data TLB Two-level; L1: 64 entries, 4-way, L2:
512 entries, 4-way

On-Chip
Network

4 × 8 mesh, 2-stage wormhole
switched, VC flow control,6 VCs per
port, 5 flit buffer depth

Main Mem-
ory

4 DDR3 Memory Controllers (MC), 8
ranks/MC, 2 banks/rank, FR-FCFS,
2KB row-buffer size, 1107 MHz mem-
ory clock, 64GB capacity, 32-entry
memory queue size

reorder memory requests based on the average memory stall
time of each processor.

3. TARGET SYSTEM, SIMULATION PLAT-
FORM, AND MULTITHREADED APPLI-
CATIONS

Table 1 gives the important features of the default 32-
core system we modeled in the Sniper simulator infrastruc-
ture [26]. Sniper allows one to carry out timing simula-
tions for both multi-program workloads and multi-threaded,
shared-memory applications with tens of cores. Later in the
paper, we modify the default values of some of the parame-
ters shown in this table to perform sensitivity experiments.
In this work, we evaluated our approach over a set of 12

multithreaded programs listed in Table 2. The second col-
umn gives a brief description of each program, and the third
column shows its total input size.2 The last column on the
other hand gives the LLC miss rates of these codes under our
default simulation platform described in Table 1. In select-
ing these applications, we tried to strike a balance between
regular and irregular data access patterns. For example,
while benchmarks such as mgrid and fma3d represent appli-
cation programs with regular access patterns, hpcg and mol-
dyn have quite irregular data access patterns made through
index arrays. We also tried to have input sizes ranging from
relatively small values (210.8 MB) to much larger ones (1.58
GB) to put different amount of pressure on the memory sys-
tem.

4. ROW REUSE DISTANCE (RRD)

4.1 Definition
The Row Reuse Distance (RRD) between two off-chip ac-

cesses (references), ra and rb, to the same memory row Ri

that reside in memory bank Bj is defined as the number of
accesses to different rows Rk(6= Ri) in the same bank that
appear between these two off-chip accesses. For example, in
Figure 3(a), the RRD between the two successive accesses
to row R3 (in bank B1) is 4. Note that we exclude from
the reuse distance the references that are targeted to dif-
ferent banks. We observe that RRD can be divided into
2Note that the input sizes we use are larger than the de-
fault sizes of these benchmarks to stress the last-level cache
(LLC).

Table 2: Applications used in our evaluations.

Application Brief Description Input LLC
Size Miss Rate

gs-solver
[38]

Gauss-Seidel based
iterative sparse
solver

390.2MB 22.6%

equake [39] Earthquake simula-
tion 487.7MB 29.8%

miniFE [40] Finite element mini
application 654.1MB 16.1%

hpcg [42]
High performance
preconditioned CG
solver benchmark

210.8MB 27.7%

facerec [39] Face recognition 436.1MB 18.1%
ammp [39] Chemistry/biology 1.09GB 36.5%
mgrid [39] Multigrid solver 771.6MB 26.2%

moldyn [41]
Generalized pro-
gram for the evalu-
ation of molecular
dynamics models

336.2MB 21.4%

fma3d [39] Crash simulation 1.58GB 47.2%
gafort [39] Genetic algorithm 364MB 20.8%

swim [39] Shallow water mod-
eling 444.9MB 22.2%

wupwise
[39]

Quantum chromo-
dynamics 1.18GB 19.4%
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Figure 3: (a) Illustration of RRD for row R3 in bank B1.
ra and rb are two requests to R3. Note that intervening
accesses to different rows in the same bank (B1) contribute
to RRD, whereas intervening accesses to different banks do
not. (b) Difference between intra-core RRD and inter-core
RRD.

two classes: intra-core RRD and inter-core RRD. As shown
in Figure 3(b), if two references belong to the same core,
the RRD in question is termed as intra-core RRD. On the
other hand, if the references belong to different cores, the
corresponding RRD is referred to as inter-core RRD. It is
important to emphasize that RRD can be used as a mea-
sure of the row-buffer locality. More specifically, a small
RRD (be it intra-core or inter-core) increases the chances for
the second reference (rb) to generate a row-buffer hit, com-
pared to a large RRD. This is because a small RRD makes
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Figure 4: Intra-core RRDs for the original applications. The y-axis in each figure captures the frequency of occurance for
different row reuse distances (given on the x-axis). The number of row reuse distances larger than 200 is negligible.
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Figure 5: Inter-core RRDs for the original applications. The y-axis in each figure captures the frequency of occurrence for
different row reuse distances (given on the x-axis). The number of row reuse distances larger than 200 is negligible.

it more likely for the second reference rb to be located in the
row-buffer, while the first reference (ra) is in the row-buffer.
This scenario results in a row-buffer hit (as opposed to row-
buffer miss). Therefore, one of the optimization strategies
that could be built on top of RRDs is to reduce RRDs, either
through architectural techniques, software optimizations, or
a combination of both. In the rest of this section, we present
intra-core and inter-core RRDs of our multithreaded appli-
cations and show how these results translate to row-buffer
locality and execution times.

4.2 RRDs of the original applications
Figure 4 and Figure 5 plot, respectively, the distribution of

intra-core and inter-core RRDs in our original applications,
when considering all rows and all banks. In obtaining the
inter-core results, we considered all cores and banks, and
similarly, in obtaining the intra-core results (for each core
in isolation), all banks are taken into account (note that,
in each figure, each point on the x-axis represents a specific

RRD value, and the y-axis gives its frequency of occurrence).
One can make two observations from these plots. First,
intra-core RRDs are generally not very high except for a few
applications (e.g., facerec, gafort, and fma3d). It needs to be
noted however that only a subset of these row reuses can be
converted into row-buffer locality at runtime, depending on
the memory buffer size and the memory request scheduling
algorithm employed. Specifically, as explained earlier, while
FR-FCFS exploits row reuse for the requests waiting in the
memory buffer, it cannot exploit any reuse that is not in
the buffer. Second, most of the inter-core RRDs plotted in
Figure 5 are very high compared to intra-core RRDs. For
example, in applications such as miniFE, hpcg and moldyn,
almost all RRDs are larger than 100.
While the distribution of RRDs is certainly important,

one also needs to consider the contributions (frequency of
occurrence) of the intra-core and inter-core row reuses. The
plot given in Figure 6(a) shows this breakdown of row reuses
between intra-core and inter-core cases. One can observe
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from this plot that, while in some applications such as fac-
erec and wupwise, intra-core row reuse clearly dominates,
in others such as equake and gafort, inter-core reuse takes
a sizable portion. Figure 6(b) gives, under the FR-FCFS
scheduling policy and the default values of our system pa-
rameters, the row-buffer hit rates of our applications within
and across cores. We observe from this plot that the hit
rates due to intra-core reuses range between 4% and 42%,
averaging on 19%. In contrast, the inter-core hit rates range
between 1% and 22%, leading to an average hit rate of 7%.
That is, row reuses originated from the same core take much
better advantage of row-buffers, compared to reuses across
different cores. These hit rates along with the row reuse fre-
quencies plotted in Figure 6(a) contribute to the execution
times shown in Figure 6(c).
There have been studies in the past on cache reuse dis-

tance. Cache reuse distance [27–29] is a concept proposed
to predict the data locality and is employed in techniques
to improve cache performance. The cache reuse distance
is defined as the number of distinct cache line addresses ac-
cessed between two consecutive accesses to the same address.
Cache performance can be largely predicted by the reuse
distance because it reflects the temporal locality of its data
access. For example, in a fully-associative cache employing
the LRU (Least Recently Used) replacement policy, we can
forecast if a data access will result in a hit or a miss. If the
reuse distance of one cache access is greater than the cache
size, the next access to the same address will be a miss; oth-
erwise, it will be a cache hit. In reality, cache performance
is also affected by other factors such as cache configuration
and replacement policies. However, the cache reuse distance
can still help to predict the cache performance with certain
level of accuracy. In fact, there have been several techniques
proposed previously to improve the cache performance based
on the reuse distance characteristics [19, 27–30].
Our proposed RRD and cache reuse distance have signif-

icant differences. First, our proposed RRD reflects charac-
teristics of a program’s off-chip memory requests, whereas
cache reuse distance focuses on on-chip data accesses. Sec-
ond, our proposed RRD takes into account the specific de-
sign of memory banks which is an important factor affecting
the performance of memory accesses. For example, interven-
ing accesses to different banks do not contribute to RRD,
whereas intervening accesses to different rows of the same
bank do. Third, the ways in which cache reuse distances
and our RRDs are used for optimization are quite differ-
ent. Specifically, cache reuse distances are used to improve
cache hits, whereas our RRDs target the row-buffer locality
of cache misses.

5. MINIMIZING RRDS
The goal of this section is to present two schemes that

aim to reduce RRDs. Both these schemes employ LLC miss
reordering (restructuring) to reduce RRDs as much as possi-
ble, constrained only by program dependencies. The first of
them focuses only on intra-core RRDs, whereas the second
one considers both intra-core RRDs and inter-core RRDs.
Below, we present the details of these two schemes. It needs
to be emphasized that these schemes are in a sense ideal
approaches, as far as optimizing for intra-core RRDs and
intra-core + inter-core RRDs are concerned. Specifically,
they do not represent any specific implementation; in fact,
they cannot directly be implemented in practice. Rather,
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(b) Row-buffer hit rates of intra-core and inter-core row
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(c) Execution times of our original applications.

Figure 6: Characterization of row-buffer reuse.

they indicate what would be the results if an ideal cache
miss reordering strategy could be employed, constrained by
only data and control dependencies in a given program code.
In the remainder of this paper, we refer to these two (ideal)
schemes as Scheme-I and Scheme-II.

5.1 Scheme-I: intra-core RRD optimization
Originally, off-chip accesses are sent over to their target

memory controllers via the on chip network, and are then
forwarded to their target memory banks. Scheme-I reorders
those accesses from a single core’s view before they reach
the memory controllers. Since off-chip accesses are gener-
ated strictly following the time-line, to perform our reorder-
ing, we construct a very large queue (buffer) to temporarily
buffer those accesses3. Note that initially this queue con-
tains the memory access sequence in its original order. Be-
cause different memory banks accommodate disjoint rows,
we focus on the row accesses within the same bank by split-
ting this queue into sub-queues based on the accessed bank’s
bankid. Row buffer locality is then optimized within each
of those sub-queues in an isolated fashion. The only factor
that prevents Scheme-I from minimizing intra-core RRDs
(by reordering the LLC misses in the 128K-entry buffer)
is potential data and control dependencies in the program
code. Although accesses to different row-buffers will not
have memory location dependencies, data hazards from the
3In our experiments, we used a 128K-entry buffer. Increas-
ing the size of this buffer further did not bring any additional
benefits when all the requests in this buffer have been pro-
cessed, we reload it with the next 128K LLC misses.
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program will restrict the opportunities for maximizing row-
buffer locality. Consider the following scenario as an exam-
ple. In a three-instruction case, an arithmetic instruction
first generates an access to row2 due to an LLC miss. A
load instruction then loads a value from row1 to register
t1. Finally, a store instruction stores t1 to row2. In this
scenario, one cannot swap the load and store instruction to
achieve row2 locality due to the load-store hazard. In gen-
eral, any dependences between the instructions that access
the same row can prevent Scheme-I from minimizing RRDs.
Note that, in a practical implementation, memory depen-
dencies can be handled in different layers, and we do not
defend one possible implementation over the other. Rather,
our goal is to take into account the impact of dependencies in
an otherwise ideal (unimplementable) scheme that can per-
form core-side memory scheduling considering a very large
buffer of references.
Our miss-reordering based approach to intra-core RRD

optimization is given as a pseudo-code in Algorithm 1. In
this pseudo-code, the body of the outermost loop is assumed
to be executed for all cores in the system. X and Y are the
number of channels and the number of banks per channel,
respectively. Each bank has a link list as its queue, which
is initialized in line 27. Our approach then distributes the
accesses over the access sub-queues according to each ac-
cess’s bankid, which is implemented by a loop between line
28 and line 30. We then call the reorder function to optimize
row-buffer locality. The first loop (line 2) in this function
traverses all memory bank sub-queues, while the second loop
(line 4) traverses all accesses within each queue. The while
loop (line 10) is used to find accesses to the same row. Note
that, in line 12, if a dependency is detected or the RRD
is already very small (which can be captured by FR-FCFS
anyway), we skip this access and go to the next one.
We now go over a simple example, shown in Figure 7, to

illustrate how our scheme works in practice. Figure 7(a) de-
picts the original access sequence to two memory banks. All
accesses are originally ordered following the time-line with-
out considering row-buffer locality (representing the original
LLC miss sequence). Figure 7(b) shows the sub-queues ac-
cording to bankid. Dependencies are marked by an arrow,
and Figure 7(c) illustrates the reordered bank queues af-
ter applying our strategy. Originally, we have 6 row-buffer
misses to bank1 and 6 row-buffer misses to bank2 in Fig-
ure 7(b). We reduce the row-buffer misses to 3 in bank1 and
4 in bank2, respectively. Note that, although the best order
will give us 2 row misses to bank1 because of the three row
accesses in total, we cannot achieve that due to dependen-
cies.
So far, we ordered the LLC misses from each core’s per-

spective independently. It needs to be noted that, evaluating
Scheme-I is important as it is relatively easier to incarnate
a practical implementation from it, compared to Scheme-II
(presented shortly). This is because the former does not re-
quire any inter-core coordination which would be very chal-
lenging to implement in practice without significant hard-
ware complexity and runtime overheads. Also note that,
although memory references from different cores interleave
at memory controllers and banks, maintaining core-level lo-
cality of memory accesses is still expected to achieve some
locality improvement (especially in cases where a given bank
is shared – in a given period – by only few cores). However,
Scheme-I may not be able to provide the optimal row lo-
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Figure 7: Example for intra-core RRD optimization.
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Figure 8: Example for inter-core RRD optimization.

cality, when accesses from all cores are considered together.
Suppose, for example that, core1 accesses row1 and row2,
and core2 accesses the row3 and row1 from the same mem-
ory bank after core1 accesses row1. In this case, the single
core view adopted by Scheme-I will not be sufficient to op-
timize the locality of row1, which leads us to our intra-core
+ inter-core RRD optimization.

5.2 Scheme-II: intra-core + inter-core RRD op-
timization

We now discuss an alternate scheme, which considers both
intra-core row reuse and inter-core row reuse. Instead of
focusing on each core in isolation, Scheme-II expands the
scope to all the cores in the system, that is, it looks at the
LLC misses coming from all cores at a given period of time
(within a queue length of 128K entries). Recall that, in
the scenario we discussed at the end of the previous sec-
tion, core1 accesses row1 and then core2 accesses row3 and
row1. In this scenario, the two accesses from core2 can be
swapped to enable the row reuse with core1. A pseudo-
code version of this approach is provided in Algorithm 2.
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Algorithm 1 Scheme-I
INPUT: # of Channels: X, # of Banks/channel: Y, Mem channel

queue length: N, # of cores: K
1: function Accesses-Reorder(X,Y)
2: for bankj , j from 0 to X*Y do
3: num← access misses in bankj

4: for missk, k from 0 to num do
5: miss_var ← missk

6: if miss_var is marked as scanned then
7: continue
8: end if
9: scan bankj

10: while next missl accesses the same row-buffer do
11: RRD ← distance between these two misses
12: if dependence_detected || RRD ≤ N then
13: miss_var ← missl

14: else
15: move missl next to missk

16: update bankj

17: miss_var ← missl

18: end if
19: mark missl scanned
20: end while
21: end for
22: end for
23: end function
24: // outermost loop
25: for core Ci, i from 0 to K do
26: //initial all bank queue sets
27: bankj ← ∅ j from 0 to X ∗ Y
28: for each access miss do
29: bankbank_id ← accessbank_id

30: end for
31: //reorder access misses
32: Accesses-Reorder(X,Y)
33: end for

Algorithm 2 Scheme-II
INPUT: # of Channels: X, # of Banks/channel: Y, Mem channel

queue length: N, # of cores: K
1: //initial all bank queue sets
2: bankj ← ∅ j from 0 to X ∗ Y
3: for core Ci, i from 0 to K do
4: for each access miss do
5: bankbank_id ← accessbank_id

6: end for
7: end for
8: //reorder access misses
9: Accesse-Reorder(X,Y)

Instead of generating a separate bank queue for each core,
we gather the accesses from all the cores and store them in
a set of very large queues based on access arrival time and
relative bankid, (captured between line 3 and line 7). We
then apply our miss reordering strategy on the bank queues
which now contain mixed accesses from all the cores.
Figure 8 shows an example illustrating how Scheme-II

works in practice. In this example, the original queue con-
tains accesses from two cores, as illustrated in Figure 8(a).
Similar to the intra-core classification method, we build the
queues according to access bankid in Figure 8(b). Figure 8(c)
depicts the optimized access order. Note that without con-
sidering inter-core reuse, we would have an access order of
R2R1R3 for memory bank1 of core2. However, taking into
account inter-core reuse, Scheme-II achieves an access or-
der R2R3R1, which benefits the row-buffer locality between
core1 and core2 on accessing R3.
It is to be noted that, as far as intra-core reuse is con-

cerned, Scheme-II is expected to be almost as good as Scheme-
I. This is because the main difference between these two
schemes is that, in Scheme-II we mix all the core accesses
together. Note also that the bank queue generation depends

only on bankid. Our reorder function only takes bankid and
rowid as input parameters, which are orthogonal to coreid.
As a result, all intra- and inter-core row reuses are captured.

5.3 Discussion
We want to emphasize that neither Scheme-I nor Scheme-

II can be implemented in hardware as they are. They are
meant to be used as bars against which results of practical
implementations can be compared. In this subsection, we
would like to discuss the hurdles that need to be addressed
if one wants to come close to the performance of our ideal
schemes. Let us start with Scheme-I first. A practical im-
plementation that approximates Scheme-I should be able to
(i) reorder off-chip references (LLC misses) in a very large
buffer before sending them over to their respective target
banks, and (ii) ensure that these requests are not reordered
in the on-chip network. One difficulty in achieving (i) is the
fact that one may not be able to afford to accommodate a
very large buffer (e.g., 128K entries) on the core side. An-
other difficulty is that the potential dependences between
off-chip requests need to be checked at the runtime, and
costs of such checks usually increase with increasing buffer
size. The issues here would be very similar to those en-
countered in designing re-order buffers (ROB [44]) in super-
scalar processor design. Point (ii) is even more problematic,
because different requests can be delayed in on-chip net-
work (between cores and memory controllers) by different
amounts, thereby arriving controllers in a different order
than they exit cores. Ensuring that the off-chip requests
are not reordered in the network may not be trivial in prac-
tice. However, an alternate view of this problem could be
to let the network routers themselves implement the desired
ordering of off-chip memory requests. That is, each router
can be attached with a reasonable-sized buffer using which
the off-chip requests are ordered. If all routers implement
this policy, one can potentially expect very good row-buffer
performance on the DRAM side. Instead of modifying all
network routers, one may also consider modifying only the
ones that are close to the memory controllers. Coming to
Scheme-II, it is certainly much more difficult to implement it
in practice, because it requires a global coordination across
all cores to decide on the best order of off-chip requests. Note
however that the network router-based implementation al-
ternative mentioned above can achieve, to some extent, the
effect of Scheme-II, as each on-chip network router normally
handles requests coming from different cores and destined to
different channels/banks. In case one prefers to have a core-
side implementation however (inside of a router-based one),
software (e.g., OS) based implementation can read buffers
attached to cores and reorder them from a global perspec-
tive. Clearly, minimizing the runtime overheads in this case
will be a primary concern.

6. EXPERIMENTAL EVALUATION

6.1 Results with the default system parame-
ters

We now quantify the impact and benefits brought by the
two schemes discussed in the previous section when simulat-
ing a system whose major parameters are listed in Table 1.
First, we present in Figure 9 and 10 the distribution of intra-
core and inter-core RRDs, respectively, when Scheme-I is
applied. One can observe from these results that, while, as
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Figure 9: Intra-core RRDs with Scheme-I. The y-axis in each figure captures the frequency of occurrence for different row
reuse distances (given the on x-axis). The number of row reuse distances larger than 200 is negligible.
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Figure 10: Inter-core RRDs with Scheme-I. The y-axis in each figure captures the frequency of occurrence for different row
reuse distances (given on the x-axis). The number of row reuse distances larger than 200 is negligible.

expected, Scheme-I significantly reduces intra-core RRDs,
it (unexpectedly) increases inter-core RRDs. This result
means that optimizing row reuse from the perspective of
each core in isolation does not necessarily generate good
row-buffer locality from a global perspective. The first two
groups of bars in Figure 13 give the row-buffer hit rates
(higher is better) with this scheme. Comparing these results
to those presented earlier in Figure 6 show that Scheme-
I improves the intra-core row-buffer locality by 16% on an
average. In turn, the impact of these row-buffer hit rate im-
provements on execution times are plotted in Figure 14 (the
first bar for each benchmark), as percentage improvements
over the original case. Overall, optimizing for only intra-
core RRD results in an execution time reduction of 17%,
when averaged over all 12 application programs we used.
Figures 11 and 12, on the other hand, give the distri-

bution of intra-core and inter-core RRD distributions with
Scheme-II. One can make two important observations from
these results. First, the distribution of intra-core misses in
Figure 11 is very similar to that in Figure 9. That is, con-
sidering inter-core row reuse does not significantly impact

intra-core reuse distances. The second observation is that
Scheme-II substantially reduces the inter-core RRDs. These
results in turn translate to the row-buffer hit rates plotted
in Figure 13 (the last two groups of bars), indicating an av-
erage row-buffer hit rate improvement of 12% for intra-core
hits and 13% for inter-core hits. Finally, this scheme brings
execution time improvements ranging between 7% (facerec)
and 34% (ammp), as captured by the second bar for each
benchmark in Figure 14.

6.2 Evaluation of the previously-proposed
schemes

In this subsection, we report results from our implementa-
tion of two previously-proposed schemes that improve row-
buffer locality and show how close they come to our savings
reported above. This first of these schemes, by Awasthi et
al. [18], employs adaptive first-touch page-placement and
dynamic page-migration, and the execution time improve-
ments it generates over the original execution case are given
as the third bar for each application in Figure 14. It can
be seen that this approach reduces execution time by 10%
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Figure 11: Intra-core RRDs with Scheme-II. The y-axis in each figure captures the frequency of occurrence for different row
reuse distances (given on the x-axis). The number of row reuse distances larger than 200 is negligible.
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Figure 12: Inter-core RRDs with Scheme-II. The y-axis in each figure captures the frequency of occurance for different row
reuse distances (given on the x-axis). The number of row reuse distances larger than 200 is negligible.

on an average. The second scheme we tested [37] is not spe-
cific to multithreaded applications but can be used for them.
It orchestrates page frame allocation so that the pages that
threads access are dispersed randomly across multiple banks
so that each thread’s access pattern is randomized. The ex-
ecution time improvements it brings over the original case
are plotted as the fourth bar in the same figure (9% aver-
age improvement). These results clearly show that, while
both these practical schemes are effective in improving per-
formance, there is a significant gap between them and our
ideal schemes, motivating for further research on improving
row-buffer locality.

6.3 Results from the sensitivity experiments
Our goal in this section is to evaluate our schemes under

different values of our major system parameters. In each
experiment, the value of only one parameter is modified;
the remaining parameters retain their original values listed
in Table 1. The results from these sensitivity experiments
with Scheme-II are given in Figure 16. Our main observa-
tions from these experiments can be summarized as follows.
First, when we increase the number of cores, the effective-

ness of our scheme increases. This is mainly because a higher
core count makes considering the row reuse across cores even
more critical, increasing opportunities for Scheme-II. A simi-
lar observation, with a smaller variance though, can be made
with the increased LLC (L3) capacity. This is due to the
fact that a larger L3 causes the off-chip requests to spread
apart more and become sparser over the memory space, this
again benefits more from our scheme, which is oriented to-
wards reducing large reuse distances. However, an opposite
trend is observed when the row-buffer (memory row) size
increased. This is because a larger memory row makes some
of the memory accesses that would normally generate row-
buffer misses result in row-buffer hits. Next, increasing the
number of banks (by keeping the total memory space same)
causes the off-chip accesses to spread more over the address
space, again increasing the importance of row-buffer opti-
mization. Finally, as expected, reducing the memory queue
size helps our schemes generate better results, as a large
memory queue captures some of the reuse that would other-
wise be lost in the smaller queue. Overall, these sensitivity
experiments clearly show that there is a great potential for
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Figure 13: Row-buffer hit rates with our schemes.
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Figure 14: Execution time improvements with different
schemes.

Scheme-II under various values of our major system param-
eters.

6.4 Results with different memory scheduling
policies

Our final set of experiments measure the behavior of our
two schemes under different memory request scheduling poli-
cies. Recall that the default memory scheduling policy used
in our experiments so far was FR-FCFS, which re-orders the
pending requests in the memory buffer to maximize row-
buffer hits. Since our schemes also reorder the requests (on
the core side) by looking at a much larger window (128K
entries instead of 32K entries), it is interesting to test its im-
pact under different memory scheduling policies. In the re-
sults presented in Figure 15, we use our approach with FCFS
(simple first-come, first-served; which is basically FR-FCFS
with no locality engagement), ATLAS [20], and TCM [35].
ATLAS [20] periodically orders threads based on the service
they received from the memory controllers so far, and priori-
tizes the threads that have attained least service over others.
In comparison, TCM [35] groups threads with similar mem-
ory access behavior into either the memory-non-intensive or
the memory-intensive bin, and performs prioritization across
these bins to maximize memory performance. In Figure 15,
all bars for a given benchmark are normalized with respect
to our approach (Scheme-II) running with FR-FCFS. Maybe
the most striking observation from this plot is that these
different memory scheduling policies generate very similar
performance results (between -3% and 3% range), as long
as they are used with our scheme. In other words, the ex-
istence of our scheme makes the specifics of the underlying
memory scheduling policy much less important. This is a
very important (and somewhat unexpected) result because,
everything else being equal, it is always more cost efficient to
employ the least complex policy at hardware. These results
clearly show that, if we could reorder the off-chip requests
on the core side, there is no need for any second-level request
reordering (in hardware) at the memory bank queues.

7. RELATED WORK
Reuse distance has been studied in a lot of prior works

to help design techniques that can improve the program’s
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Figure 15: Results with different memory scheduling poli-
cies. For each benchmark, all bars are normalized to
Scheme-II running with FR-FCFS.

performance [27–29, 31–34]. Chen and Zhong proposed a
scheme to predict program locality by analyzing the data
reuse distance with the help of profiling techniques [27].
They first employed distance-based sampling to a program’s
execution. Then they use a pattern recognition technique
to analyze the data reuse distance to predict the program’s
data locality. Keramidas et al used reuse distance to im-
prove the traditional LRU cache replacement policy [28].
Based on their observation that LRU is not effective for ap-
plications that have a large reuse distance, they proposed
static and dynamic cache replacement policies in order to
improve performance.
Zhang et al [19] investigated on multi-core data reuse.

Their investigation shows that current on-chip cache hier-
archies of multicore architectures and the state-of-the-art
code/data optimizations are not able to fully exploit inter-
core data reuse in parallel applications. They presented a
compiler-based data locality optimization strategy that can
balance both inter-core and intra-core reuse optimizations.
Our work is different from [19] because we focus on row-
buffer data locality.
There have also been many previously-proposed schemes

to optimize the design of memory schedulers [13, 14, 18, 20,
23–25]. Zhang et al proposed a permutation-based scheme
that dramatically increases the row-buffer hit rate to reduce
memory stall time [13]. Their scheme employed the fast
exclusive-OR operation to generate the bank index, so that
data addresses are interleaved in a way to increase both the
bank-level parallelism as well as data locality in the row-
buffer. However, their scheme targets only on single pro-
cessor platforms. In this work, we are more interested in
measuring the impact of row-buffer locality on performance
for multithreaded applications.
The past years have also seen many research works lever-

aging memory controller scheduling to improve the fairness
for parallel applications [20,23–25,35,36]. A scheme is pro-
posed in [20] that periodically reorders threads based on
the amount of service they have obtained from the memory
controllers. Their scheme is based on Pareto Distribution
which claims that a job running for a short time so far is
expected to end soon. The proposed memory scheduling
policy prioritizes threads receiving the least amount of ser-
vice over others in each epoch in order to provide fairness
to all threads. PAR-BS [25] is a memory scheduling scheme
proposed to provide quality of service and also improve the
system throughput. In the PAR-BS scheme, DRAM re-
quests are processed in batches in order to provide fairness.
PAR-BS also employs parallelism-aware DRAM scheduling
by processing requests from a given thread in parallel across
all the DRAM banks. As a result, the system performance
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Figure 16: Results from the sensitivity experiments. In each sensitivity experiment, the middle group of bars represent the
default value.

can be improved by reducing the memory stall time of the
threads.

8. CONCLUDING REMARKS AND FUTURE
WORK

In this paper, we make two main contributions. First,
we define row reuse distance (RRD) both for a core and
across different cores, and quantify it using a set of 12 mul-
tithreaded benchmarks and a detailed simulation infrastruc-
ture. Second, we evaluate two ideal schemes targeting (i)
only intra-core row reuses and (ii) both intra- and inter-core
memory row reuses. The results from this evaluation show
that (i) the scheme that targets only intra-core row reuses
results in an increase in inter-core reuse distances (despite
the significant reduction in intra-core reuse distances), and
(ii) the second scheme significantly improves inter-core row
reuse distances while maintaining almost the same perfor-
mance level of the first scheme regarding the intra-core row
reuses. To our knowledge, ours is the first work that for-
malizes the concept of memory row reuse distance concept,
and gives two schemes to optimize it. Overall, our exper-
imental result indicate that the proposed two schemes can
improve row-buffer buffer hit rates by 13% and 26% on av-
erage, which translate to average execution time improve-
ments of 17% and 21%. The schemes evaluated in this work
are not directly implementable. Our next step includes de-
veloping practical schemes that can approximate the behav-
ior/performance of these ideal schemes. In particular, mo-
tivated by the observation that considering both intra-core
and inter-core row reuse distances can bring significant ex-
ecution time savings, we plan to explore low-overhead tech-
niques that enable coordinated LLC miss scheduling across
multiple cores.
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