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ABSTRACT

Processing data in or near memory (PIM), as opposed to
in conventional computational units in a processor, can
greatly alleviate the performance and energy penalties of
data transfers from/to main memory. Graphics Process-
ing Unit (GPU) architectures and applications, where main
memory bandwidth is a critical bottleneck, can benefit from
the use of PIM. To this end, an application should be prop-
erly partitioned and scheduled to execute on either the main,
powerful GPU cores that are far away from memory or the
auxiliary, simple GPU cores that are close to memory (e.g.,
in the logic layer of 3D-stacked DRAM).

This paper investigates two key code scheduling issues in
such a GPU architecture that has PIM capabilities, to max-
imize performance and energy-efficiency: (1) how to auto-
matically identify the code segments, or kernels, to be of-
floaded to the cores in memory, and (2) how to concurrently
schedule multiple kernels on the main GPU cores and the
auxiliary GPU cores in memory. We develop two new run-
time techniques: (1) a regression-based affinity prediction
model and mechanism that accurately identifies which ker-
nels would benefit from PIM and offloads them to GPU cores
in memory, and (2) a concurrent kernel management mecha-
nism that uses the affinity prediction model, a new kernel ex-
ecution time prediction model, and kernel dependency infor-
mation to decide which kernels to schedule concurrently on
main GPU cores and the GPU cores in memory. Our experi-
mental evaluations across 25 GPU applications demonstrate
that these two techniques can significantly improve both ap-
plication performance (by 25% and 42%, respectively, on
average) and energy efficiency (by 28% and 27%).

1. INTRODUCTION
Graphics Processing Units (GPUs) provide very high com-

putational bandwidth at a competitive power budget. These
characteristics have led to their deployment in a wide range
of platforms, including in many machines that appear in the
Top500 and Green500 lists [1,2]. Although GPUs are likely
to play a promising role in the design of exascale systems,
continuous scaling of their performance and energy efficiency
will not be an easy task. One of the biggest impediments
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to this continuous scaling is the memory system energy con-
sumption due to data transfer overhead [58]. A typical 64-bit
DRAM access consumes about 100-1000X the energy con-
sumed by a double-precision floating point operation [24,58],
and this gap could increase with technology scaling [77].
Even with optimistic assumptions about improvements in
memory technology, reducing the total DRAM access en-
ergy from approximately 18-22 pJ/b (in modern GDDR5)
to 4 pJ/b and sustaining it for over 100,000 nodes, mem-
ory can still consume a significant fraction (e.g., 70%) of the
total system’s power budget [112].

Figure 1 illustrates the data movement and energy con-
sumption overheads of transferring data between memory
and computational units across 25 applications in a mod-
ern GPU system,1 by showing: (1) the fraction of all data
movement in the system that is due to off-chip transactions
between memory and the GPU, and (2) the fraction of to-
tal system energy consumption that is due to this off-chip
data movement. We observe that memory accesses result in
49% of all data movement and are responsible for 41% of
the energy consumption of the system.
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Figure 1: Data movement and system energy consumption
caused by off-chip memory accesses.

Figure 2 shows the performance loss due to the overhead
of transferring data from/to main memory, by plotting the
normalized performance of our applications compared to an
idealized system where all off-chip memory requests in our
baseline are magically eliminated, i.e., forced to hit in the
last-level cache.2 Averaged across 25 applications, main
memory accesses lead to 45% performance degradation.

A promising approach to minimize data movement, en-
ergy and performance overheads of main memory accesses is
to move memory-intensive computations closer to memory,
i.e., Processing-In Memory (PIM) [3,4,27,33], also known as
Processing-Near Memory (PNM) or Near-Data Computing
(NDC) [13]. The core of the PIM concept is to have com-
putational units that are closely integrated with memory

1Section 6 provides our experimental methodology.
2The minimum DRAM latency after the last-level cache is 100
cycles (see Section 6 for details). The average latency is higher
due to significant contention observed in the DRAM system [10,
26,54,57,59–61,63,75,76,78,79,100–102,107,108].
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Figure 2: Performance normalized to a hypothetical GPU
where all the off-chip accesses hit in the last-level cache.

such that data can be moved from memory to those units
at much higher bandwidth, lower latency and lower energy
than doable from memory to the main processor. While
the PIM concept goes back to late 1960s [99] and it had
gathered some momentum through several projects in 1990s
(e.g. [33, 40, 55, 62, 67, 85]), its main technological limitation
has been the difficulty of integrating computational units
very close to memory. With the significant advances in adop-
tion of 3D-stacked memory technology that tightly combines
a logic layer and DRAM layers [3, 4, 48, 64, 71, 86, 109], this
limitation has been overcome and PIM has become a likely-
viable approach to improve system design.

The PIM approach has recently been explored (e.g., [44,
112]) for reducing memory bandwidth and minimizing the
data transfer overheads between GPU cores and off-chip
DRAM. A promising way to integrate PIM to a GPU-based
system is what we call a PIM-Assisted GPU architecture,
where at least one 3D-stacked memory chip is placed adja-
cent to the GPU chip, and both chips are interconnected via
a memory link on an interposer (as depicted in Figure 3).3

The 3D-stacked memory contains a base logic layer, hous-
ing GPU cores. This architecture has two types of compute
engines: (1) large and powerful primary GPU cores, called
GPU-PIC, i.e., processing-in-core, which are similar to mod-
ern GPU cores, and (2) smaller and less powerful GPU cores,
called GPU-PIM, which are placed in the logic layer under
main memory and assist in performing computation. No
prior work explored how to fully exploit this architecture
such that appropriate parts of an application are identified
and scheduled to utilize both the main GPU cores (GPU-
PIC) and cores in memory (GPU-PIM) to maximize the
performance and energy-efficiency of the entire system.

Our goal in this paper is to develop mechanisms to
fully and automatically exploit the performance and energy-
efficiency potential of PIM-Assisted GPU architectures. To
this end, we investigate two key code scheduling prob-
lems. First, how to automatically identify the code segments
to be offloaded to the GPU cores in memory. Second, how
to concurrently schedule multiple kernels on the main GPU
and the cores in memory. To address these problems, one
must consider several questions such as (1) what the gran-
ularity of the code segment that is offloaded to GPU-PIM
should be, (2) how to determine which code segments bene-
fit from being executed on GPU-PIM, (3) how to efficiently
distribute work between the main GPU and the PIM engine
to maximize system performance, (4) while executing each
code segment on its preferred cores as much as possible.

To this end, we first characterize the execution behavior of
different applications at the kernel granularity to estimate
the performance and energy benefits when each individual
kernel is placed in the main GPU or GPU-PIM. Because
the CPU offloads computation to the GPU at the kernel-
granularity, maintaining the same granularity for PIM ex-

3Section 2.2 discusses details and advantages of this architecture.

3D Stacked
Memory and 

Logic
Memory Dice

GPU-PIM

GPU-PIC

Memory Link

on Interposer

Silicon Interposer

2

1

Figure 3: PIM-assisted GPU Architecture.

ecution enables low-overhead computation offloading from
the CPU to both GPU-PIC and GPU-PIM. Based on this
insight, we propose two new runtime techniques, the
primary contributions of this paper, that address the two
scheduling problems.

Kernel Offloading. As an application exhibits varying
computation and memory demands during different phases
of execution, some kernels (e.g., those that fit in the main
GPU scratchpad) benefit more from executing on the main
GPU, GPU-PIC, and others (e.g., those that overwhelm the
memory bandwidth to the main GPU) on the GPU in mem-
ory, GPU-PIM. Thus, identifying the affinity of the kernels
correctly and scheduling each on the appropriate compu-
tational engine would improve performance. To solve this
problem, we develop a regression-based affinity prediction
model and mechanism that accurately identifies, at runtime,
which kernels would benefit from executing on PIM cores
and offloads them to the GPU cores in memory. Our re-
gression model, which is built on an in-depth kernel level
analysis, considers three broad kernel-level metrics (memory
intensity, kernel parallelism, and shared memory (software
managed scratchpad) intensity) and is trained using applica-
tions randomly picked from our pool of 25 applications (i.e.,
the training set). Our detailed experimental evaluations on
the remaining applications (i.e., the test set) show that the
proposed mechanism improves average performance by 25%
and energy efficiency by 28% compared to a baseline con-
ventional GPU architecture that contains the same number
of GPU cores as that of the combined number of GPU cores
present in both GPU-PIC and GPU-PIM.

Concurrent Kernel Management. We find that even
a highly accurate prediction mechanism for kernel offload-
ing can leave many resources (e.g., GPU-PIC) underutilized.
During the execution of a kernel on either the main GPU
or GPU-PIM, the other device is left unutilized, which lim-
its achievable system performance. Thus, identifying in-
dependent kernels that can be scheduled concurrently and
scheduling them on GPU-PIC and GPU-PIM at the same
time, in a manner that minimizes overall application exe-
cution time, can significantly improve system performance
and efficiency. To solve this problem, we develop a concur-
rent kernel management mechanism that uses the affinity
prediction model, a new regression-based kernel execution
time prediction model, and dependency information across
kernels to decide which kernels to schedule concurrently on
the main GPU cores and the GPU cores in memory. Our de-
tailed experimental evaluations indicate that our technique
improves average performance by 42% and energy-efficiency
by 27%, compared to the same baseline described above.

This paper makes the following major contributions:
1. It provides an in-depth kernel-level analysis of GPU ap-

plication behavior with respect to suitability for Processing
in Memory. It makes an experimentally-supported case for
the use of kernel granularity to identify and schedule GPU
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program code segments to execute on either the main GPU
cores or the GPU cores in memory.

2. It develops a new regression-based affinity prediction
model to estimate the best compute engine to execute a
kernel in a PIM-assisted GPU architecture. We show how
to use this model to guide a new kernel offloadingmechanism
to GPU cores in memory.

3. It develops a new execution time prediction model for
kernel execution in a PIM-assisted GPU architecture. We
show how to use this model to guide a new concurrent kernel
management mechanism that executes multiple kernels con-
currently in the main GPU and the in-memory GPU cores
in a PIM-assisted GPU architecture.

4. It comprehensively evaluates the kernel offloading and
concurrent kernel management mechanisms and shows that
both improve performance and energy efficiency significantly
while requiring no support from the programmer.

2. BACKGROUND
This section provides a brief background on GPUs and

the PIM-assisted GPU architecture.

2.1 Conventional GPU Architectures
Our baseline conventional GPU consists of multiple cores,

also called streaming-multiprocessors (SMs)4 in NVIDIA
terminology [82]. Each SM has a private L1 data cache,
a texture cache and a constant cache, along with a software-
managed scratchpad memory (called shared memory). The
SMs are connected to memory channels (partitions) via an
interconnection network. Each memory partition is directly
connected to a partition of the L2 cache, which is shared
by all the cores, and a memory controller. The memory
requests are buffered and scheduled by the memory con-
trollers [9, 54, 106]. There are multiple memory controllers,
each controlling a memory partition. Data is interleaved at
the chunk granularity across the controllers. The parallel
parts of a CUDA/OpenCL application, which are offloaded
to the GPU, are called kernels. The execution of an appli-
cation starts with the launch of a kernel on the GPU. The
kernel launch involves copying the kernel code and the data
from the CPU memory to the GPU memory. Once the ker-
nel finishes execution on the GPU, its results are copied back
to the CPU memory from the GPU memory.

2.2 PIM-Assisted GPU Architectures
As we discussed in Section 1, 3D-stacked memory tech-

nology enables the ability to place computational units
in the base logic layer that is underneath the memory
stacks [3,4,48,64,71,86,109]. There can be multiple strate-
gies to exploit such a PIM technology in a GPU system.

One strategy is to stack the memory directly on top of
a conventional GPU architecture, by placing a conventional
GPU in the logic layer [114]. Although such an organization
provides the benefits of tight GPU and memory coupling
such as high bandwidth and low access latency, it has two
primary issues. First, heat from the processor might signif-
icantly degrade the retention time of the 3D-stacked mem-
ory [68]. Consequently, the refresh rate of the DRAM might
need to be increased, leading to reduced peak performance
and higher energy consumption [20, 53, 68, 69, 88]. Second,
such an organization limits the total memory capacity that
could be stacked within the area of the processor.

4In this paper, we use the terms core and SM interchangeably.

Another strategy [44,112] to exploit PIM in a GPU system
is to keep the main GPU same as in conventional systems
but connect to it, via memory links on a silicon interposer,
one or more 3D-stacked memory units that are capable of
doing computation, as depicted in Figure 3 with one 3D-
stacked memory. The base logic layer of each 3D-stacked
memory houses an auxiliary GPU that is simpler and more
power-efficient than the main GPU. Such an organization
has considerably lower thermal constraints than the previ-
ous strategy and is more scalable in terms of memory capac-
ity. However, if computations are not scheduled appropri-
ately across the main GPU and the computational units in
the 3D-stacked memories, the energy consumption, latency
and bandwidth overheads of the interposer may limit per-
formance due to excessive communication between the main
GPU and the 3D-memory stacks.

In this paper, we call the latter organization (of Figure 3)
the PIM-Assisted GPU architecture, and aim to maximize
its benefits by scheduling computations intelligently across
the main GPU and PIM units. This architecture is a het-
erogeneous system. The main GPU chip, which we call the
processing-in-core architecture (GPU-PIC 1 in Figure 3),
provides high throughput to compute-intensive GPGPU ap-
plications, but it has limited memory bandwidth due to its
horizontal integration with the memory stack (bottlenecked
by the memory links). On the other hand, the PIM cores
on the base logic layer of the 3D memory stack, which we
call the processing-in-memory architecture (GPU-PIM 2 in
Figure 3), achieves the full bandwidth and energy efficiency
of 3D stacking of memory and logic, but provides a peak
instruction throughput lower than that of GPU-PIC due to
the smaller number of the execution engines in the logic
layer. Therefore, placing computation correctly on these two
different types of GPU units, GPU-PIC and GPU-PIM, is
critical for performance and energy efficiency. For example,
computations that are memory-intensive and can tolerate
the lower parallelism present in the logic layer of GPUs are
likely better executed on GPU-PIM instead of GPU-PIC.

Unlike GPU-PIC, GPU-PIM has a direct interface to 3D-
stacked DRAM. Therefore, GPU-PIM is able to sustain
much higher memory bandwidth (in our configuration, 4×)
and it experiences much lower memory latency than GPU-
PIC. Because of this, we observe that GPU-PIM does not
significantly benefit from having an L2 cache and we evalu-
ate a GPU-PIC design without an L2 cache. Table 4 pro-
vides the details of our GPU-PIC and GPU-PIM configura-
tion, which is similar to the TOP-PIM configuration [112].
We also perform a sensitivity analysis in Section 8 on the
number of cores and cache in GPU-PIM. Note that the cores
in GPU-PIC and GPU-PIM use the same ISA, and thus,
have the same programmability features.

Thermal Feasibility. Eckert et al. [29] provide extensive
models to demonstrate the thermal feasibility of PIM-based
GPU architectures. They argue that the power consumed
by the logic layer at the GPU-PIM at an ambient temper-
ature of 30◦C can be as much as 50W and describe that
this is thermally feasible. Considering their study and con-
figuration parameters from [112], our GPU-PIM has four
times fewer SIMD compute units, similar to [44]. We esti-
mate the maximum chip power usage of GPU-PIM when
running MaxFlops [25]5 to be approximately 45W, using
GPUWattch [65]. GPUWattch models NVIDIA Fermi [82]

5MaxFlops is compute-intensive benchmark that exhibits high
dynamic core power consumption.
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SMs, which are obsolete and not power-efficient compared
to current generation GPU cores [83]. Therefore, we believe
GPU-PIM will be even more power efficient when fabricated
for state-of-the-art and future power-efficient designs.

3. MOTIVATION
The PIM-assisted GPU architecture is a scalable and het-

erogeneous substrate. It provides the flexibility of adding
more computational units on the GPU-PIC, and more mem-
ory capacity and bandwidth by incorporating additional 3D
memory stacks containing GPU-PIM. At the same time,
GPU-PIC and GPU-PIM architectures are quite different
in terms of their ability to cater to applications with vary-
ing computation and memory demands. Given such hetero-
geneity in the PIM-assisted GPU architecture, it might be
desirable for the CPU to offload a compute-bound GPGPU
application onto GPU-PIC and a memory-bound GPGPU
application onto GPU-PIM. However, this is not optimal,
as we demonstrate in this section since it does not fully
utilize both the GPU-PIC and GPU-PIM. There are many
challenges in designing an offloading strategy to maximize
overall application performance and energy efficiency by ap-
propriately partitioning and scheduling an application across
GPU-PIC and GPU-PIM. This section motivates the poten-
tial opportunities and limitations of application offloading to
motivate our approach of kernel offloading.

3.1 Benefits of Application Offloading
Figure 4 shows the normalized performance (in terms of

IPC) and energy efficiency (in terms of Instructions/Joules),
compared to our baseline conventional GPU architecture
with equivalent number of computation units (40 cores),
when each application from our workload suite are offloaded
by the CPU on either the GPU-PIM (8 cores) or the GPU-
PIC (32 cores) in our PIM-Assisted GPU Architecture. Best
Application Offloading shows the average performance and
energy efficiency when each application is, with ideal knowl-
edge, offloaded to the computation unit that provides the
best performance for that application. We make three major
observations.
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Figure 4: Effect of application offloading.6

6The results are normalized to a conventional GPU which has the
combined peak instruction throughput of GPU-PIC and GPU-
PIM (i.e., 40 cores). The entire application is offloaded to either
GPU-PIC (32 cores) or GPU-PIM (8 cores).

First, offloading all applications to either GPU-PIC or
GPU-PIM yields similar average performance because some
applications prefer GPU-PIC and others GPU-PIM. We
find that many applications significantly gain from the high
memory bandwidth and low memory latency benefits of
GPU-PIM. Some applications, e.g., GRAM and APSP, ben-
efit from GPU-PIM due to low memory access latencies.
These two applications (GRAM and APSP) have limited paral-
lelism (as shown later in Table 2), leading to poor latency
tolerance. Neither of these applications stress the memory
bandwidth and they have a small fraction of accesses going
to off-chip memory (Figure 1). In contrast, many appli-
cations, such as CCL, PR, and CFD, experience performance
degradation when executed on GPU-PIM, because they 1)
are bottlenecked by the limited computational power of the
PIM cores, 2) do not effectively utilize the high bandwidth of
GPU-PIM because they generate a small number of memory
requests.

Second, offloading all applications to GPU-PIM provides
the highest average energy efficiency (Instructions/Joule),
even higher than the Best Application Offloading mechanism
which chooses the unit that provides the best performance on
a per-application basis. This is because GPU-PIM leads to a
much more energy-efficient memory system, on average. Ap-
plications such as GUPS, GRAM, and APSP benefit significantly
from GPU-PIM in terms of energy efficiency, primarily be-
cause of the reduced execution time due to the performance
improvements.

Third, an optimal application offloading scheme that can
detect the best platform to execute an application on, based
on performance, can provide both performance and energy
improvements than offloading always to either GPU-PIC
or GPU-PIM. On average, GPU-PIM improves energy ef-
ficiency by 42% over GPU-PIC while having the same per-
formance of GPU-PIC. The optimal application offloading
scheme (in terms of performance) improves performance by
16% and energy efficiency by 28% over the baseline. Note
that the optimal scheme is optimized for performance, not
energy efficiency, and therefore its energy efficiency is less
than that of offloading all applications to GPU-PIM.

We also note that an optimal offloading scheme could be
different based on the metric to optimize for. For example,
for MVT, GPU-PIM is much more energy-efficient but lower
performance than GPU-PIC. There is no clear winner as one
could optimize for either performance or energy-efficiency,
depending on the use-case. In this paper, we focus on op-
timizing performance. However, we also demonstrate the
positive impact of our schemes on energy efficiency.

3.2 Limitations of Application Offloading
We demonstrate the limitations of application offloading.

Even for an optimal application offloading strategy, we find
two major limitations that need to be addressed to make
offloading more efficient in terms of performance.

Limitation I: Lack of Fine-Grained Offloading. We
observe that offloading at the granularity of each applica-
tion is too coarse-grained to take advantage of the different
characteristics of code present within an application that
can favor either GPU-PIC or GPU-PIM. To motivate this,
Figure 5 shows a kernel-level, i.e., finer-grained, execution
time breakdown of four representative GPGPU applications
on GPU-PIC and GPU-PIM, normalized to the execution
time on GPU-PIC. We show only the kernels that dominate
each application’s execution time. Three observations are in
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order. First, CONS has two representative kernels and execu-
tion times of both kernels increase on GPU-PIM. Therefore,
GPU-PIM is not an appropriate computation unit for any of
CONS’s kernels. Second, FWT has four representative kernels
and execution times of all kernels decrease on GPU-PIM.
Therefore, GPU-PIM is an appropriate configuration for all
its kernels. Third, LUH and FDTD have kernels that demon-
strate different behavior. Although both applications as a
whole have higher execution times on GPU-PIM, some of
their kernels actually benefit from GPU-PIM. For example,
in LUH and FDTD, Kernel-K1 has lower execution time on
GPU-PIM compared to GPU-PIC.

0

0.5

1

1.5

G
P

U
-

P
IC

G
P

U
-

P
IM

G
P

U
-

P
IC

G
P

U
-

P
IM

G
P

U
-

P
IC

G
P

U
-

P
IM

G
P

U
-

P
IC

G
P

U
-

P
IM

CONS FWT LUH FDTD

E
x

e
c

u
ti

o
n

 t
im

e
 

N
o

rm
a

li
z
e

d
 t

o
 G

P
U

-P
IC K1 K2 K3 K4 K5

Figure 5: Breakdown of the execution time across different
kernels for four representative GPGPU applications.

Thus, a careful kernel-level offloading strategy can per-
form even better than the application offloading strategy we
evaluated (Section 3.1). Figure 6 illustrates the potential
of kernel offloading for FDTD. Scenario-I and Scenario-II are
the two possible application offloading strategies adopted to
execute the entire FDTD on GPU-PIM or GPU-PIC, respec-
tively. In the kernel offloading strategy (Scenario-III), each
kernel of FDTD is offloaded to the computation engine where
its execution time is lower (i.e., each kernel is offloaded to
the unit it has affinity towards). Therefore, Kernel-K1 is of-
floaded to GPU-PIM and the other two kernels are offloaded
to GPU-PIC. Kernel offloading saves many execution cycles
(A ) even over the best application offloading strategy. How-
ever, the key challenge of kernel offloading is in identifying
the affinity of each kernel, which we provide a new solution
for in this paper (Section 4).
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Figure 6: Performance advantages of kernel offloading (III)
and concurrent kernel management (IV and V) mechanisms
using the FDTD application as an example.

Limitation II: Lack of Concurrent Utilization of
GPU-PIM and GPU-PIC. An application offloading
mechanism loses out on the opportunity of using both the
GPU-PIM and GPU-PIC at the same time, because it is
too coarse-grained. In contrast, if offloading is performed
at the kernel level, as described before, both GPU-PIM and
GPU-PIC can be utilized by concurrently executing inde-

pendent kernels on them. Figure 6 illustrates an example
of this in Scenarios IV and V. In FDTD, Kernel-K3 can start
executing only when both Kernel-K1 and Kernel-K2 finish
their executions. However, Kernel-K1 and Kernel-K2 can
execute in parallel. Because of the concurrent execution of
kernels, overall application execution time is reduced (B )
over the best application-offloading scenario, in scenario-IV.
Scenario-V in Figure 6 demonstrates that kernel affinity, i.e.,
scheduling each kernel on the execution engine that is best
for the kernel’s performance matters: Kernels K1 and K2
respectively have affinity for GPU-PIM and GPU-PIC, and
executing them concurrently on these engines leads to even
higher overall application execution time savings (C ) than
in Scenario-IV where the same kernels are scheduled onto
the opposite engines.

Our Goal. As we illustrated, while an application-level
offloading strategy can improve performance and energy ef-
ficiency, a finer, kernel-level offloading strategy can provide
more opportunity. Therefore, our goal is to develop mech-
anisms for (1) automatically identifying the architectural
affinity (GPU-PIM or GPU-PIC) of each kernel in an ap-
plication, and (2) scheduling kernels that can concurrently
execute on different parts of the PIM-assisted GPU archi-
tecture (GPU-PIM or GPU-PIC), while balancing the exe-
cution times across architectures and maintaining a kernel’s
architecture affinity as much as possible.

4. KERNEL OFFLOADING MECHANISM
This section presents an architecture affinity prediction

model to enable a runtime mechanism for kernel offloading
in PIM-Assisted GPU architectures.

Need for a Prediction Model. If all the kernels of an
application prefer the same compute engine (either GPU-
PIM or GPU-PIC), kernel offloading becomes equivalent to
application offloading. However, if different kernels have dif-
ferent affinities, kernel-level offloading can yield higher per-
formance than application offloading (Section 3.2). Because
the CPU offloads computation to the GPU at the kernel
granularity, maintaining the same granularity for PIM ex-
ecution enables low-overhead computation offloading from
the CPU to either GPU-PIC and GPU-PIM. To avoid the
overhead of first sampling the performance of each kernel on
both platforms and then deciding the appropriate platform
for execution, we would like to predict the affinity of the ker-
nel before it starts execution. To this end, we make use of a
regression model that is composed of predictive variables.

Metrics. To build our regression model, we need to iden-
tify appropriate metrics (i.e., predictive variables) that can
characterize the kernel affinity to GPU-PIC or GPU-PIM.
We classify kernel characteristics into three primary cate-
gories: 1) memory intensity, 2) parallelism, and 3) shared
memory (i.e., scratchpad) intensity. Table 1 lists these cat-
egories along with their predictive metrics/variables.

Table 1: Metrics used to predict compute engine affinity and
GPU-PIC and GPU-PIM execution time.

Primary Category Predictive Metric Static/Dynamic

I: Memory intensity
of Kernel

Memory to Compute Ratio Static
Number of Compute Inst. Static
Number of Memory Inst. Static

II: Available
Parallelism
in the Kernel

Number of CTAs Dynamic
Total Number of Threads Dynamic
Number of Thread Inst. Dynamic

III: Shared Memory
Intensity of Kernel

Total Number of Shared
Memory Inst.

Static
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To measure the effect of kernel memory intensity on per-
formance, we consider the memory-to-compute-ratio of the
instruction mix executed by that particular kernel. Memory-
to-compute ratio gives insight into the level of performance
the kernel can achieve with higher memory bandwidth, as
the computation requires data from the memory, indicat-
ing whether the higher bandwidth available on GPU-PIM is
beneficial for performance. We use the number of coopera-
tive thread arrays (CTAs) (also called work groups or thread
blocks) as a measure of the parallelism in the kernel. This
allows us to take into account the difference in the peak in-
struction throughput between GPU-PIC and GPU-PIM for
each kernel. For a kernel with a high number of CTAs, GPU-
PIC’s performance might be higher than that of GPU-PIM
due to the higher number of cores in GPU-PIC. To approx-
imate a kernel’s shared memory intensity, we measure the
total number of shared memory instructions in the kernel. A
shared-memory-intensive application might not require high
DRAM bandwidth, making it more suitable for GPU-PIC.
Predictive metrics/variables (listed in Table 1 middle col-
umn) are used to help build a robust model by complement-
ing the primary metrics of the kernel. For example, in ap-
plications such as RED, CONV, STRM, the number of CTAs
along with the number of threads provides a notion about
the CTA sizes. Usually a larger CTA has higher resource
requirements, which might lead to fewer of such CTAs to be
scheduled onto an SM at any given time, even in the pres-
ence of available SM resources (but not enough resources to
schedule another complete CTA). Therefore, having more
SMs, as in GPU-PIC, might lead to better performance for
such a large CTA. We classify the metrics as static or dy-
namic, as shown in Table 1. Static metrics are obtained
by simply parsing the source code, while dynamic metrics
are input-set-based and can be known only at/after kernel
launch or during runtime.

Why These Metrics? We choose only the most influen-
tial metrics to build our regression model, i.e., those metrics
that contribute the most to the model’s accuracy. We define
accuracy for our regression model for a kernel as either 100%,
if the model predicts the kernel’s affinity correctly, or 0%, if
it predicts incorrectly. We experimented with building the
regression model using the number of thread instructions as
the only metric, and found that this model has an accuracy
of 79% on the training kernels. Using all the metrics shown
in Table 1 leads to an overall accuracy of 87%. The use
of other characterization metrics described in Goswami et
al. [34] does not further improve accuracy.

Table 2 provides the detailed characteristics of various
application kernels, obtained via offline profiling. It also
shows the primary category metrics (memory-to-compute-
ratio, the number of CTAs, and shared memory intensity)
and architecture affinity of each kernel (GPU-PIM (Y) or
GPU-PIC (N)). The affinity of a kernel can be reasoned for
most of the kernels by understanding the level of each met-
ric category. For example, kernels such as convolutionRows
and prescan have high shared memory intensity, and prefer
to run on GPU-PIC because of the lower DRAM bandwidth
demand and the higher instruction throughput available in
GPU-PIC compared to GPU-PIM. Kernels of GRAM prefer
GPU-PIM because of their lower parallelism and high mem-
ory intensity. Kernels such as fdtd_step1_kernel, which
have high memory intensity coupled with high parallelism,
prefer GPU-PIM, as they benefit from the higher available
memory bandwidth.

Regression Model for Affinity Prediction. We build
a logistic regression model [30, 43], shown in Equation 1,
which provides a prediction for the affinity of a given kernel.
A logistic regression model is a classifier and it generates a
discrete output σ(t): 1 for GPU-PIM and 0 for GPU-
PIC. The model uses the metrics in Table 1 as inputs.

σ(t) =
et

et + 1
(1)

where:

σ(t) = model output (σ(t) < 0.5 => 0, σ(t) ≥ 0.5 => 1)
t =α0+α1x1+α2x2+α3x3+α4x4+α5x5+α6x6+α7x7

αi = Coefficients of the Regression Model
xi = Predictive Metrics/Variables (Table 1)

To train the logistic regression model, we randomly sam-
ple 60% (15) of the 25 GPGPU applications considered in
the paper. These 15 applications consist of 82 unique ker-
nels that are used as inputs for the training of the model.
The remaining 40% (10) of the applications, consisting of
42 unique kernels, are part of the testing set and are used
to validate the model. We perform offline profiling of en-
tire application execution only once to train the regression
model and use this built model at runtime for affinity predic-
tion. The model is able to accurately predict the architec-
ture affinity (either GPU-PIC or GPU-PIM) of 83% of the
test kernels. Table 2 shows the affinity prediction (in column
D) of our model for each kernel along with the true affinity
of the kernel (in column B). The major sources of inaccu-
racy are due to cache effects and branch divergence, which
our regression model fails to accurately capture because of
their heavily runtime-dependent characteristics. For exam-
ple, due to the considerable amount of cache hits in kernels
such as drelax (BFS) and dfindelemin (MST), GPU-PIC
outperforms GPU-PIM, even though these kernels have high
parallelism and memory intensity. Yet, our model estimates
incorrectly that they are better executed on GPU-PIM. We
further discuss the effects of random sampling and applica-
tion input on our model’s accuracy in Section 8.

Kernel affinity could also be predicted statically, without
using the dynamic metrics in Table 1. Using only the static
metrics, the accuracy of the affinity prediction model de-
creases from 83% to 74%. We find that the inclusion of
dynamic (i.e., input-based) metrics in the model is neces-
sary for accurate prediction in applications such as CFD,
STRM and PVC. This is because the affinity of these ap-
plications’ kernels is highly influenced by input-based kernel
dimensions (i.e., number of threads, CTA size) as they sig-
nificantly affect the compute/resource requirements of these
kernels.

Implementation. Figure 7 shows our framework to en-
able kernel offloading to PIM engines. Before runtime, a
simple source to source translation is performed i . The
purpose is to compute the values of the static metrics, such
as the number of memory/compute/shared-memory instruc-
tions (in terms of PTX instructions), and embed them as
arguments to the kernel launch call. We extend the CUDA
runtime to implement the architecture affinity prediction
model ii . The prediction model is trained offline and does
not incur any overhead of training during online prediction
of affinity. At runtime, during kernel launch from the CPU,
the dynamic metrics required for the prediction model such
as the number of CTAs and the number of threads get popu-
lated with their values in the kernel launch call. Using both
the static and dynamic metrics, the CUDA runtime on the
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Table 2: Kernel characteristics, classification, and architecture affinity. Legend: (I) Memory Intensity (Memory to Compute
Ratio = L :≤ 0.2, 0.2 < M ≤ 0.3, H :> 0.3), (II) Parallelism (No. of CTAs = L :≤ 64, 64 < M ≤ 1024, H :> 1024), (III)
Shared Memory Intensity (Total no. of Shared Mem. Inst. = L :≤ 2.5 × 105, H :> 2.5 × 105). (B) Architecture affinity
(Y: GPU-PIM, N: GPU-PIC), (C) Major reasons for architecture affinity, (D) Affinity prediction by our regression model in
Section 4) (Y: GPU-PIM, N: GPU-PIC). Only kernels that dominate application execution time are shown.

Workload Kernel Name I II III B C D Workload Kernel Name I II III B C D

BFS [17] initialize M H L Y Cache/BW Y RED [25] reduce H M L Y BW N
drelax H H L N Cache N SCP [81] scalarProdGPU L M L Y — N

BICG [37] bicg_kernel1 H L L Y BW Y SLA [81] prescan L H H N S.Mem. N
bicg_kernel2 M L L N Cache Y STRM [21] kernel_compute_cost H M L Y BW Y

BLK [81] BlackScholesGPU L M L Y Cache Y sgemmNN_MinPlus L L H Y Lat. Y
MapperCount H M L Y BW Y APSP [16] matrixMul H M L Y Lat. N

CCL [42] unitBitonicSortKernel L H M N Compute N apsp_seq M L L Y Lat. Y
prescan M M H N S.Mem. Y cuda_compute_step_factor M M L Y BW Y

CONV [37] convolution3D_kernel M M L N Cache Y CFD [21] cuda_compute_flux L M L N Cache Y
std_kernel M L L Y BW Y cuda_time_step H L L Y BW Y

CORR [37] reduce_kernel M H L N Compute N CONS [81] convolutionRows H H H N S.Mem. N
corr_kernel L L L N Cache Y convolutionColumns H H H N S.Mem. N

fdtd_step1_kernel H H L Y BW Y FWT [81] fwtBatch1Kernel H H L Y BW Y
FDTD [37] fdtd_step2_kernel M H L N Cache N GUPS RandomAccessUpdate L M L Y BW Y

fdtd_step3_kernel H H L N Cache N LIB [81] Pathcalc_Portfolio_KernelGPU L L L N Cache N
gramschmidt_kernel1 M L L Y Lat. Y Pathcalc_Portfolio_KernelGPU2 L L L Y BW Y

GRAM [37] gramschmidt_kernel2 H L L Y Lat. Y dfindelemin H H L Y Cache Y
gramschmidt_kernel3 M L L Y Lat. Y MST [17] dfindcompmin H H L N Cache N
IntegrateStress-ForElems_kernel L M L Y BW/Lat. Y init H H L Y Cache Y

LUH [56] CalcHourglassControl-ForElems_kernel H M H N S.Mem. N PVC [42] MapperCount H H L Y BW N
CalcFBHourglassForce-ForElems_kernel H M H N S.Mem. N prescan L H H N S.Mem. N

MVT [37] mvt_kernel1 M L L N Cache Y SP [17] dinit H H L Y Cache Y
mvt_kernel2 H L L Y BW Y dupdateeta H H L Y Cache N

PR [42] MapperCount H H L Y BW Y TRA [81] transpose_naive M H L Y Cache Y
prescan L H H N S.Mem. N transpose L H L Y Cache N

host-side computes7 the architecture affinity of the kernel
using the affinity prediction model, and offloads the kernel
to the architecture that is expected to provide the highest
performance. Doing so avoids the overhead of kernel migra-
tion, which might arise if the kernel were to be offloaded
after it starts execution on a less preferred architecture.
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Figure 7: Modified CUDA runtime for kernel offloading

5. CONCURRENT KERNEL

MANAGEMENT
This section presents a new runtime kernel management

scheme to efficiently execute multiple kernels concurrently
in the heterogeneous computational units in a PIM-assisted
GPU architecture.

5.1 Analysis
Offloading kernels appropriately to their preferred com-

pute engine (Section 4) leads to performance benefit. How-
ever, due to the sequential execution of the kernels, such
PIM-assisted GPU architectures are under-utilized as only
either the GPU-PIC or the GPU-PIM executes a kernel at a
given time, but not both. If there are independent kernels,
their concurrent execution on GPU-PIC and GPU-PIM can
improve overall system utilization and performance (Sec-
tion 3.2). We develop a mechanism to achieve such concur-
rent execution of kernels on both GPU-PIC and GPU-PIM.
To efficiently schedule kernels for concurrent execution, we
need three key pieces of information: (1) kernel-level de-
pendence information, to identify independent kernels; (2)
7The regression model parameters are kept in CPUmemory. Dur-
ing the API call, model-based affinity is predicted by the CPU,
which requires only 15 32-bit floating point operations (7 multi-
plications, 7 additions and 1 comparison).

affinity of each kernel and (3) execution time prediction for
each kernel, both to decide what compute engine is the best
to execute the kernel on. We first describe how this infor-
mation is gathered in our runtime system.

(I) Kernel-level Dependence Information. A kernel-
level data dependence graph is required to decide which ker-
nels can execute in parallel. For our evaluations, we obtain
the dependence graph of an application for a given input by
profiling the application’s execution to determine the cor-
rect and complete set of read-after-write (RAW) dependen-
cies across the kernels. Such cross-kernel dependencies can
be easily found and marked by a compiler. Most compilers
targeting array-based applications already run dependence
analysis for each loop nest (kernel). One could extend such
an analysis to check dependence’s across loop nests (kernels)
as well.8

Note that, our concurrent kernel management mechanism
can be directly used for applications that inherently possess
concurrent kernels (which could be conveyed by the pro-
grammer), without any need for data dependence analysis.

(II) Architecture Affinity Information. We observed
in Section 3.2 that kernel affinity information can help im-
prove performance of concurrent kernel execution (Scenario-
V, Figure 6). To predict the affinity of a kernel, we use the
logistic regression model described in Section 4. This model
is used to fill the GPU-PIM and GPU-PIC queues with ker-
nels based on their affinity.

(III) Execution Time Information. Kernel depen-
dence and affinity information is necessary, but not suffi-
cient to balance kernel execution times across GPU-PIC and
GPU-PIM. For instance, consider an application consisting
of two independent kernels having affinity towards GPU-
PIM. If only the affinity information is used, both these ker-
nels are offloaded to GPU-PIM, which leads to the under-

8Note that not all applications have multiple independent kernels
and thus can take advantage of concurrent kernel execution. We
observe this in SCP and GUPS.
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utilization of GPU-PIC (and perhaps a lost opportunity to
improve performance). We address such situations by exe-
cuting kernels in compute engines that do not satisfy the ker-
nel affinity, if doing so would reduce overall execution time.
Therefore, in this example, we might offload the kernel that
has the lower execution time on GPU-PIC, to GPU-PIC.
However, this requires the estimation of the kernel execu-
tion times on both GPU-PIC and GPU-PIM, for which we
develop a model next.

5.2 Execution Time Prediction Model
For predicting a kernel’s execution time, we build a linear

regression model [74] that uses the same predictive metrics
used in our architecture affinity prediction model (Table 1).
Equation 2 shows the linear regression model.

y = β0+β1x1+β2x2+β3x3+β4x4+β5x5+β6x6+β7x7 (2)

where:

y = model output (predicted execution time; classified
into bins using Table 3)

βi = Coefficients of the Regression Model
xi = Predictive Metrics/Variables (Table 1)

The model is trained using the kernel execution time infor-
mation obtained from profiling the execution times of appli-
cations from the training set that were used in Section 4 to
create the affinity prediction model. Earlier work (Dubach
et al. [28]) utilizes compile-time parameters to predict the
performance of an application, but exactly predicting the
absolute execution time of a kernel accurately is a difficult
task and exact prediction has significant error. Therefore,
rather than utilizing the predicted execution time directly
in an absolute manner, we classify the predicted execution
time (y) into five different bins, as shown in Table 3. The
ranges of the bins were carefully chosen by analyzing the
profiled data. With such classification, we can efficiently
schedule the kernels on GPU-PIC and GPU-PIM, without
having to accurately predict the absolute execution times,
albeit perhaps with lower benefit than if we had the correct
absolute execution times.

Table 3: Classification of predicted execution time into bins.

Classification Bins Very Low (1) Low (2) Medium (3) High (4) Very High (5)

Range (in Cycles) <10K 10K-500K 500K-5M 5M-50M >50M

Figure 8 shows the classification error of our regression-
based execution time prediction models for GPU-PIC and
GPU-PIM. Error is measured by calculating the distance of
the predicted bin from the true bin normalized to the total
number of bins. For example, a predicted bin of Low (2)
with a true bin of Very Low (1) has an error of (2− 1)/5 =
0.2, since the total number of bins is 5 and the distance of the
predicted bin from the true bin is 1. The results show that
the execution time prediction model provides a classification
accuracy of 77% and 80% on the test set for GPU-PIC and
GPU-PIM, respectively. The inaccuracies are mainly due to
the heavily-runtime-dependent cache and branch divergence
effects (as discussed in Section 4).

5.3 Algorithmic Details and Implementation
The main incentive to concurrently execute kernels is to

maximize system utilization. For this purpose, the execu-
tion time on GPU-PIC and GPU-PIM needs to be balanced.
However, the problem of balancing execution times across
two architectures is equivalent to a known NP-Complete par-
titioning problem [32]. The partitioning problem is the task
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Figure 8: Classification error of test kernel execution times.

of deciding whether a given set of positive integers can be
partitioned into two subsets such that the sum of the two
subsets are equal. The only difference in our case is that we
have a list of pairs (instead of a single number) of positive ex-
ecution times, where each pair is a tuple of <execution time
on GPU-PIC, execution time on GPU-PIM>. We adopt a
greedy approach to solve this problem in three steps.

Figure 9 shows the schematic of our concurrent kernel
management framework. The CUDA runtime predicts the
architecture affinity ii of all kernels launched by the CPU.
The kernels are fed into their respective queues in the ker-
nel distribution unit iv and the execution begins. During
runtime, there might be a case where all the kernels prefer
a single type of compute engine or either the GPU-PIC or
GPU-PIM queue is empty but there are still kernels waiting
in the other compute engine’s queue. To address this, the
runtime steals a waiting independent kernel from the non-
empty queue to the empty queue based on the kernel’s exe-
cution time prediction iii on the less preferred architecture.
The runtime prefers to steal the first independent kernel
that has a predicted execution time (on the less preferred
architecture) smaller than the remaining execution time of
the currently executing kernel. Algorithm 1 describes this
greedy process of kernel stealing that enables concurrent ker-
nel management.

CUDA Runtime

Affinity Prediction Model
GPU-PIM

GPU-PIC
Execution Time Prediction Model

Kernel 

Distribution 

Unit

ii

iii iv

Figure 9: Modified CUDA runtime for concurrent kernel
management.

Algorithm 1 Runtime Queue Management

⊲ time(kernel, engine) returns the time-bin of the kernel if it is executed on
the given engine.
⊲ Let X and Y represent the two different engines (GPU-PIC and GPU-PIM).
⊲ independent_kernels(queue) returns the list of the kernels that can run
concurrently with the kernels currently executing and have no past dependencies.
⊲ time_executed(kernel) returns the amount of time the kernel has been exe-
cuting.
if X = Idle && X.queue = ∅ && Y.queue 6= ∅ then

if independent_kernels(Y.queue) 6= ∅ then

for each kernel in independent_kernels(Y.queue) do

if time(kernel,X) ≤ (time(kernelrunning,y, Y )
− time_executed(kernelrunning,y)
+ time(kernel, Y ) ) then

Execute "kernel" on X
Break

⊲ Similarly, repeat the process for Y

6. EVALUATION METHODOLOGY
Infrastructure. We modified the cycle-accurate

GPGPU-Sim v3.2.2 [12, 52] to simulate our PIM-Assisted
GPU architecture. To enable the execution of two different
GPUs, we created two clusters of SMs, one for GPU-PIC
and another for GPU-PIM. GPU-PIC and GPU-PIM do not
concurrently work on the same data. Therefore, to maintain
coherence between them, we flush the L2 cache in GPU-PIC
after kernel execution. As the L1 caches are write-through,
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they do not need to be flushed. There is no explicit synchro-
nization needed between GPU-PIC and GPU-PIM as they
never share data during concurrent execution. The kernel
distribution unit in the CUDA runtime, shown in Figure 9,
checks for any inter-kernel dependencies to avoid concurrent
scheduling of dependent kernels.

For concurrent kernel execution, we use CUDA Streams,
which are supported by GPGPU-Sim. A stream is a se-
ries of kernel launches and memory operations between the
CPU and GPU that are executed sequentially. Different
streams are capable of executing concurrently depending on
available resources. In our simulation framework, we create
two CUDA Streams: PIC_CUDAStream and PIM_CUDAStream.
GPU-PIM and GPU-PIC are assigned their own streams,
thereby making the execution of the streams concurrent.
We modified the CUDA runtime support in GPGPU-Sim
to overload the API calls with the kernel metrics and added
support for the architecture affinity prediction model (Sec-
tion 4), execution time prediction model (Section 5.2), and
kernel distribution unit (Section 5.3). During application
execution, our runtime framework is able to read the kernel
metrics passed along with the kernel launch call, obtain the
runtime metrics, and predict the affinity of the kernel.

Workloads. We chose CUDA applications from var-
ious benchmark suites (NVIDIA SDK [81], Rodinia [21],
Shoc [25], Polybench [37], Mars [42], LonestarGPU [17])
and several other applications (e.g., LUH [56], APSP [16],
GUPS). We collect the results at kernel boundaries to en-
sure that all comparisons are for the same amount of work
completed across different executions. We only simulate the
portions of code that are executed on GPU.

Simulated Systems. Table 4 provides the details of the
simulated GPU-PIC and GPU-PIM configurations. We as-
sume that GPU-PIC has 32 GPU cores and GPU-PIM has
8 GPU cores underneath a 3D memory stack. We compare
this design to a conventional baseline GPU architecture that
has 40 GPU cores. These two configurations have the same
peak execution throughput. The L2 cache size of the base-
line GPU is equal to that of GPU-PIC (768 kB). GPU-PIM
does not have an L2 cache Section 2.2). All our simula-
tions on the baseline GPU maintain (if any) inter-kernel
data reuse, i.e., the L2 cache is not flushed in-between the
execution of two kernels, unlike concurrent GPU-PIC and
GPU-PIM execution on our proposed architecture.9

To simulate the timing of 3D-stacked DRAM, we use
the timing parameters provided by Jevdjic et al. [49]. We
use GPUWattch [65] for power analysis of GPU-PIC and
GPU-PIM cores, caches, and interconnect. For DRAM en-
ergy analysis, we augment this model with a simple linear
equation adding the wire transfer energy numbers given by
Keckler et al. [58] to the DRAM read/write energy for a
Hybrid Memory Cube DRAM [86]. We faithfully model
the bandwidth, latency, and timing of 3D-stacked DRAM.

9We also considered using a baseline architecture capable of con-
current kernel execution on a partitioned set of 32 SMs and 8 SMs,
but there are two issues with such a baseline. First, GPGPU ap-
plications tend to be highly parallel and fill the entire set of SMs
provided, and we take this into account in our 40-SM baseline.
Second, we still need a mechanism to decide which partition to
launch each of the kernels. Depending on its characteristics, a ker-
nel might prefer lower or higher number of SMs. Our new kernel
offloading mechanism may be modified to make such a baseline
work, but we leave this as future work. For these reasons, we
normalize all results to a baseline with 40 SMs and no concurrent
kernel execution.

Table 4: Parameters of the simulated system.

GPU-PIC Features 1.4GHz, 32 cores, 32 SIMT width, GTO warp scheduler [82]

Shared L2 (GPU-PIC) 16-way 64KB/memory channel, 128B cache block size

GPU-PIM Features 1.4GHz, 8 cores, 32 SIMT width, GTO warp scheduler [82]

Resources per 16KB shared memory, 16KB register file, Max.
Core [36, 91, 92] 1536 threads (48 warps, 32 threads/warp)

Private Caches per 16KB L1 D-cache, 12KB T-cache,
Core [36, 91, 92] 8KB C-cache, 2KB I-cache, 128B block size

Memory Model 12 Memory Controllers, FR-FCFS, 8 banks/MC, 924 MHz
Partition chunk size: 256 bytes [35]
tCL = 11, tRP = 11, tRC = 39, tRAS = 28, tCCD = 2
tRCD = 11, tRRD = 5, tCDLR = 5, tWR = 12

Bandwidth 88.8GB/s (Interposer link per GPU-PIM stack)
355.2GB/s (within GPU-PIM stack)

Interconnect 1 crossbar/direction (32 cores, 12 MCs), flit
(GPU-PIC) [36] size=32B, 1.4GHz, islip VC & switch allocators

Interconnect 1 crossbar/direction (8 cores, 12 MCs), flit
(GPU-PIM) [36] size=32B, 1.4GHz, islip VC & switch allocators

GPU-PIM has access to the full bandwidth of 3D-stacked
DRAM, whereas GPU-PIC has limited bandwidth as it is
pin-limited. Table 5 provides the parameters we use for
calculating DRAM energy. We assume a crossbar intercon-
nect between the private L1 caches and the shared L2 cache,
keeping it consistent with the currently available GPUs [6].

Table 5: Parameters of our DRAM energy model.
Energy per bit [86] 13.7 pJ/bit

Wire Energy (256 bits, 10 mm) [58] 310 pJ

Assumed distance between GPU-PIC and GPU-PIM 20 mm

7. EXPERIMENTAL RESULTS
We compare the performance and energy efficiency of

our kernel offloading and concurrent kernel management
schemes with their oracle counterparts. The oracle schemes
make ideal offloading and concurrent execution decisions
by profiling each kernel with its runtime input and obtain-
ing completely accurate execution times for each kernel on
GPU-PIC and GPU-PIM (instead of using regression mod-
els). Therefore, the oracle schemes provide the best possible
performance for each application. The oracle kernel offload-
ing scheme finds the correct kernel affinity for each kernel
and schedules it for execution on the best engine. The oracle
concurrent kernel management scheme provides the minimal
execution time for an application by utilizing both GPU-PIC
and GPU-PIM while respecting kernel dependencies. We
normalize the performance and efficiency results to those of
the 40-SM baseline GPU described in Section 6. We report
the results separately for the applications used for training
and testing, to show the effectiveness of our model.

Effects of Kernel Offloading. Figures 10a and 10b
show the performance and energy efficiency benefits of our
dynamic kernel offloading scheme, respectively. Our tech-
nique increases the performance and energy efficiency of the
testing set applications by 25% and 28%, respectively. The
oracle kernel offloading scheme provides 34% and 40% aver-
age performance and energy efficiency improvement, respec-
tively, on the testing set. The inability of our scheme to
perform as good as the oracle scheme is due to the mispre-
dictions of kernel affinity by our regression model.10

The inaccuracies of our prediction model (Section 4) usu-
ally cause some kernels (e.g., of CONV and CORR) to be incor-
rectly offloaded to GPU-PIM, leading to performance losses.

10In some cases where computation parallelism is the main bot-
tleneck, e.g., for CONV, even the oracle scheme loses performance
compared to the baseline because the baseline can utilize all the
40 GPU cores for each kernel whereas the PIM-assisted GPU ar-
chitecture can utilize either 32 or 8.

9
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Figure 10: Impact of our Kernel Offloading scheme on (a) Performance, (b) Energy efficiency.

However, because GPU-PIM is significantly more energy ef-
ficient than GPU-PIC, in most of the mispredicted kernels
(e.g., of APSP and LIB; see Figure 10b), the overall energy ef-
ficiency of our scheme is still higher than that of the oracle’s,
which is optimized for performance, not energy.

Figure 11 shows the percentage of execution time when
GPU-PIC and GPU-PIM are executing kernels. Applica-
tions such as LUH, PR, and SLA have kernels that exhibit
different architecture affinities within the application and
thus benefit from kernel offloading over application offload-
ing. Our model is able to capture this variation in affinity
and we utilize the opportunity that kernel-level offloading
presents us as mentioned in Section 4. In this scheme, GPU-
PIC and GPU-PIM do not execute concurrently, leading to
under-utilization of the system.
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Figure 11: Percentage of execution time GPU-PIM and
GPU-PIC execute kernels with our kernel offloading scheme.

We make three observations based on these results. First,
kernel offloading gives the same results as the best applica-
tion offloading (as we showed in Figure 4) for applications
such as BFS, BLK, SCP, and GUPS. This is because these appli-
cations either consist of a single kernel (BLK, SCP and GUPS),
or all the kernels of the application prefer the same engine
(BFS). Second, kernel offloading performs better than appli-
cation offloading in applications such as FDTD, PR, and PVC.
This is due to the benefits of fine-grained offloading, dis-
cussed in Section 4, which selects the fastest execution en-
gine for each kernel. Third, our scheme performs worse than
application offloading for applications such as BICG, CORR,
and MST, due to mispredictions in kernel affinity. BICG has
two kernels, one of which prefers GPU-PIC and the other
GPU-PIM. Due to mispredictions, the kernel that prefers
execution on GPU-PIC is executed on GPU-PIM, leading

to lower performance compared to application offloading,
which offloads the entire application to GPU-PIC. These
mispredictions are due to data reuse at the L2 cache, which
make GPU-PIC faster than GPU-PIM (lacks an L2 cache).

Effects of Concurrent Kernel Management. Fig-
ures 12a and 12b show the performance and energy efficiency
benefits of our concurrent kernel management scheme, re-
spectively. On average, our management scheme improves
performance and energy efficiency by 42±4% and 27±2%,
respectively, over the baseline across the test set.11 The or-
acle scheme on the test set provides 53% and 33% improve-
ments in performance and energy efficiency, respectively.
Similar to our kernel offloading scheme, affinity mispredic-
tions cause performance penalties, but they improve energy
efficiency in general.

Figure 13 shows the percentage of execution time when
both GPU-PIC and GPU-PIM are executing kernels con-
currently.12 It can be seen that the applications with high
concurrency across the engines are the ones that gain the
most in terms of performance.

We make four observations based on these results. First,
our scheme performs the same as application offloading in
applications such as BLK, GRAM, FWT, and GUPS. There is
no kernel-level concurrency in these applications (see Fig-
ure 13). BLK and GUPS consist of a single kernel; GRAM and
FWT have no independent kernels, leading to sequential exe-
cution of kernels in all of these applications.

Second, applications such as FDTD, PR, LIB and MST fail to
perform as good as the oracle scheme because their execu-
tion times are not predicted accurately (even though their

11As a result of the dynamic nature of kernel scheduling and the
greediness in our scheme, different concurrent kernel executions
might be possible for the same application, which might result in
different performance and efficiency. This arises because multiple
independent kernels can be predicted to be in the same execu-
tion time bin. Any one of these kernels could be picked by our
concurrent kernel scheduler as they are at equal “priority”. The
error bounds in Figure 12a and 12b show the variation in perfor-
mance and energy efficiency due to different choices made by the
scheduler at runtime.

12The breakdown for the best-case of concurrent kernel execution
is shown.
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Figure 13: Percentage of execution time when kernels are
concurrently running on GPU-PIM and GPU-PIC with our
concurrent kernel management scheme.

affinity predictions are correct). Our heuristic checks for
the kernel’s predicted runtime on the unsuitable platform,
and decides whether to wait for its preferred platform to be
free, or to execute it concurrently on the less-suitable yet
under-utilized platform right away. Our execution time pre-
diction fails to calculate the exact execution time bin, and
leads to sub-optimal scheduling decisions in these applica-
tions. Third, applications such as BICG, MVT, PVC and SP

under-perform due to the mispredictions in kernel affinity.
In SP, one of the two kernels is mispredicted for GPU-PIM,
and both of the kernels are executed on GPU-PIM. Follow-
ing our heuristic of running the kernel with shorter execution
time based on the execution time bins does not help because
both kernels fall into the same bin. Therefore, the heuristic
arbitrarily chooses one kernel for GPU-PIM and the other
for GPU-PIC, which negatively affects performance as one
of the kernels takes considerably longer on GPU-PIC even
though they fall in the same execution time classification
bin. Also, due to the lack of many kernels, there is no
leeway for mispredictions. The scenario is similar for the
other applications as well. APSP also suffers from this situa-
tion, but because this application has many (200+) kernels
that execute, the mispredicted kernels do not dominate the
execution time. Thus, we still get significant performance
improvement on APSP. Finally, for applications such as CCL,
RED, CFD and FWT, we are able to achieve comparable perfor-
mance to that of the oracle scheme, which is very significant.
In RED, even though the affinity is incorrectly predicted, due
to kernel stealing, we are able to offload the appropriate ker-
nels to their preferred architecture, which leads to significant
performance improvement.

We conclude that our kernel offloading and concurrent
kernel management schemes lead to significant average per-
formance and energy efficiency improvements across 25 ap-
plications we evaluated for both training and testing.

8. SENSITIVITY STUDIES
We perform multiple sensitivity studies to understand: 1)

the impact of architectural decisions for GPU-PIM, 2) sensi-
tivity of the regression model to the testing set and different
application inputs, 3) opportunities and challenges of utiliz-
ing multiple GPU-PIMs.

8.1 GPU-PIM Design Choices
L2 Cache and Core Count. We analyzed the effect

of caches on GPU-PIM’s performance. There is 9% slow-
down when a 384kB L2 cache is added to GPU-PIM, due to
the additional latency the L2 cache introduces to the mem-
ory request path, which is heavily used in the presence of
memory-intensive kernels. We also varied the number of
SMs in GPU-PIM from 4 to 16. With 8 SMs, GPU-PIM
achieves within 30% of the performance of 16 SMs. Impor-

tantly, 8 SMs is thermally feasible (< 50W), but more SMs
likely reduce the feasibility of GPU-PIM.

8.2 Regression Model
Training Set. To evaluate our mechanisms’ sensitivity

to applications used in the training set, we selected a com-
pletely different training set (by picking applications to be
included in the training set in a random manner) and rebuilt
the regression model. We found the accuracy in predicting
the architecture affinity of the test kernels to be 81%. We
also performed a semi-random sampling, where 20% of the
most influential applications (that affect the accuracy of the
model) were made a part of the training set and the remain-
ing 40% were chosen randomly to be included in the training
set. This leads to an accuracy of 88% for the test kernels.
To study the impact of varying the size of the training set on
the regression model, we build models using three different
training set sizes: 40%, 60% and 80% of the applications.
The accuracy of these models on the test set were 70%, 83%
and 81%, respectively. As the training set size increases,
accuracy improves to a point, but further increase over-fits
the model (i.e., when more than 60% of the applications in
the training set), after which accuracy starts decreasing.

Sensitivity to Application Input Set. Figure 14
shows the performance of our kernel offloading scheme on
8 GPGPU applications with different input sets. For appli-
cations such as CFD, STRM, PVC, we are able to predict the
affinity accurately. These applications are able to change
their parallelism (number of CTAs, number of threads) de-
pending on their inputs, enabling accurate affinity predic-
tion. For RED Input-2, we capture affinity accurately, but
RED Input-1 has mispredictions. This is because Input-1 fits
inside the cache and has high reuse, unlike Input-2, whose
working set is larger than the cache. For applications such as
BFS, MST, SP, we predict affinity incorrectly, which leads to
suboptimal performance. These applications are heavily de-
pendent on their input data and it is difficult for our model
to perfectly account for such very irregular cases. In MST

Input-1, different kernels prefer different affinities, whereas
MST Input-2 contains kernels that always prefer to execute
on GPU-PIM.
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Figure 14: Affinity prediction model’s sensitivity to input.

8.3 Systems with Multiple GPU-PIMs
Number of GPU-PIMs. We experimented with two

other configurations that have 2 and 4 GPU-PIMs, respec-
tively, while increasing the GPU-PIC memory bandwidth by
2× and 4× (due to multiple memory links between GPU-
PIC and GPU-PIMs). Assuming perfect data placement
(i.e., data needed by a GPU-PIM is located in its local
stacked memory), application offloading onto only GPU-
PIMs gives an improvement of 31% and 51% in performance
and energy efficiency, respectively. With the best application
offloading scheme, we see improvements of 53% and 65%, re-
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spectively. These trends are similar to the trends discussed
in Section 3, and indicate that our schemes are likely to be
scalable with number of GPU-PIMs.

Data Placement. Earlier results with multiple GPU-
PIMs assumed perfect data placement such that each GPU-
PIM has the data it needs in its local memory stack. How-
ever, this might not always be possible. Therefore, archi-
tectures comprising multiple GPU-PIMs might suffer from
memory transactions that are requested and served by dif-
ferent (non-local) memory stacks. Moreover, these transac-
tions have to go through the GPU-PIC since there are no
direct communication channels between the different GPU-
PIMs. With the default CTA scheduler and the default ad-
dress mapping, we find that approximately 50% of memory
transactions are non-local. We changed the striping of data
from 256Bytes/bank to 32KBytes/bank, causing non-local
accesses to reduce by 8-10% for applications such as MST,
STRM and LIB. By modifying the CTA scheduler and/or ad-
dress mapping intelligently, it is possible to minimize non-
local accesses, as shown by a recent work [44].

9. RELATED WORK
To our knowledge, this is the first work that compre-

hensively investigates kernel-level offloading mechanisms in
PIM-Assisted GPU Architectures. It is the first to develop
automated models and methods for (1) offloading kernels to
PIM units, (2) concurrently executing kernels on different
heterogeneous compute engines in a PIM-Assisted GPU Ar-
chitecture, to maximize system performance and efficiency.
We briefly discuss research in related areas.

Processing-in-Memory (PIM) Architectures.
There is a substantial body of work on PIM that
explores placing computation units within memory
(e.g., [18, 33, 40, 55, 62, 67, 85, 89, 90, 93–96, 98, 99]).
3D-stacked memory technology brings new dimen-
sions and better feasibility to PIM-based architec-
tures [3, 4, 14, 15, 27, 39, 41, 44, 70, 71, 73, 87, 109]. Our
work is most closely related to the concurrent work of
Hsieh et al. [44], which proposes programmer-transparent
schemes for offloading code segments to PIM cores and
for co-locating code and data together in a 3D-memory
stack. They use a compiler-based technique to find the
code segments to offload to the PIM compute units based
on a cost-benefit analysis. Our work does not require
sophisticated compiler support as it performs scheduling at
the kernel level and kernels are already well designated in
modern GPU applications. Farmahini-Farahani et al. [31]
propose an architecture that reduces data transfers by
stacking accelerators on top of off-chip DRAM devices. In
the context of GPUs, Zhang et al. [112] propose TOP-PIM,
a throughput-oriented PIM-Assisted GPU architecture.
They show significant energy efficiency improvements by
offloading GPU applications closer to memory. However,
they evaluate executing the entire application on either
the host or GPU-PIM. Our work builds upon a similar
architecture and proposes mechanisms to more efficiently
utilize such an architecture by performing scheduling at the
finer-grained kernel level.

Machine Learning-based Prediction Models. Ma-
chine learning techniques have been widely deployed for per-
formance and power prediction models (e.g., [7, 11, 45–47,
66, 72, 80, 84, 110, 113]). Wu et al. [110] propose a GPU
performance and power model that uses machine learning
techniques to predict the behavior of incoming applications

from profiled data. Ardalani et al. [7] propose a performance
prediction model that takes as input a single-threaded CPU
version of an application and predicts the performance for
its GPU port. Panwar et al. [84] present an online kernel
characterization technique and performance model to esti-
mate the performance of a kernel on different GPU archi-
tectures. Ipek et al. [45,46] develop models for performance
prediction of parallel applications and for aiding architec-
tural space exploration. We use a regression-based approach
to develop our affinity and execution time prediction models
for PIM-Assisted GPU architectures.

Task Scheduling. There has been considerable work
done in the domain of task scheduling to improve load bal-
ance and performance in both homogeneous and heteroge-
neous systems (e.g., [8,19,23,26,38,50,51,97,103–105,111]).
Aji et al. [5] design an OpenCL runtime called MultiCL,
which can effectively map the command queues onto the
best device for high performance. Their runtime scheduler
involves static device profiling, dynamic kernel profiling, and
dynamic device mapping. Chen et al. [22] study a task queue
based dynamic load balancing mechanism for a multi-GPU
setup. None of these works examine scheduling or load bal-
ancing issues in a PIM-Assisted GPU Architecture. In this
paper, we develop new affinity and execution time predic-
tion models to efficiently schedule kernels to heterogeneous
compute units in such an architecture.

10. CONCLUSION
We developed two new code scheduling techniques that

enable effective use of processing-in-memory (PIM) mecha-
nisms in PIM-Assisted GPU architectures, where a conven-
tional GPU is augmented with 3D memory stacks that house
simpler GPUs in their logic layers. First, a kernel offloading
mechanism that accurately decides what code portions to
offload to the GPUs in the 3D memory stack, using a new
regression-based kernel affinity prediction model. Second,
a concurrent kernel management mechanism that uses the
affinity prediction model, a new kernel execution time pre-
diction model, and kernel dependency information to decide
which kernels to schedule concurrently on both the main
GPU cores and the GPU cores in memory stacks. These
two mechanisms operate at the kernel-level, which simplifies
scheduling and management, and makes our approach trans-
parent to programmers and compilers, as code is offloaded
from the host system to a GPU system at the kernel granu-
larity in modern systems. We have comprehensively evalu-
ated both of our mechanisms and shown that 1) they provide
significant performance and energy efficiency improvements
across a wide variety of GPU applications and 2) the im-
provements we obtain are robust to changes in the training
set for our regression model and changes in system param-
eters. We conclude that our kernel-level scheduling mech-
anisms can be an effective runtime solution for exploiting
processing-in-memory in modern GPU-based architectures.
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