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Abstract—Since main memory system contributes to a large
and increasing fraction of server/datacenter energy consumption,
there have been several efforts to reduce its power and energy
consumption. DVFS schemes have been used to reduce the
memory power, but they come with a performance penalty. In
this work, we propose DEMM, an OS-based, high performance
DVFS mechanism that reduces memory power by dynamically
scaling individual memory channel frequencies/voltages. Our
strategy also involves clustering the running applications based
on their sensitivities to memory latency, and assigning memory
channels to the application clusters. We introduce a new metric
called Discrete Misses per Kilo Cycle (DMPKC) to capture the
performance sensitivities of the applications to memory frequency
modulation. DEMM allows us to save power in the memory
system with negligible impact on performance. We demonstrate
around 25% savings in the memory system energy and 10%
savings in the total system energy, with only a 4% loss in
workload performance.

I. INTRODUCTION

Dynamically changing the operating voltage and frequency
(DVFS) has been employed as an effective strategy to reduce
the power and energy consumption of the main memory
system in modern multicores [1], [2], [3], [4]. Here, similar to
DVFS in the processor domain, the main idea is to reduce the
memory power by lowering the operating frequency. However,
a slower memory system can impose performance overhead
and increase the execution times of the running applications
due to increased off-chip access latencies. Performance loss
of applications can cause two main problems: first, some
applications cannot tolerate the loss in performance; and sec-
ond, although the power consumption of the memory system
decreases by lowering the frequency, it may not be beneficial
in terms of the total system energy, since the application
execution times increase. Deng et al. [3] proposed a dynamic
scheme that adjusts the frequency of the memory system with
the goal of saving energy, while considering the imposed
performance overhead. In their work, at each time epoch,
they compute the performance slack (the tolerable perfor-
mance loss) for each running application. Then, the memory
frequency is reduced based on the smallest slack among all
of the running applications. However, three issues can limit
the use of this approach: (1) computing the slack for each
application requires a reference execution time which may
not be easily available; (2) the mathematical model proposed
in their work to capture the impact of the frequency scaling
on the application performance of in-order cores can be quite
complex and highly inaccurate for out-of-order processors and
multicores with a large number of cores; and (3) once the
slacks are computed for running applications, the smallest
slack among all applications should be considered in order

to find an appropriate memory frequency. This is because
changing the frequencies of the memory channels affects all
the running applications, which have different sensitivities to
the off-chip access latency. This can be very restrictive in
practice since any sensitive application has the potential to
become a bottleneck when reducing the memory frequency.

To overcome these limitations, we introduce DEMM, an
OS-based, high performance DVFS mechanism for reduc-
ing memory system power by scaling memory frequen-
cies/voltages to match application demand. Our strategy in-
volves partitioning applications at runtime by their sensitivity
to memory latency. Less sensitive applications can tolerate a
slower memory channel without loss of performance; how-
ever, the most sensitive applications should still be given the
maximum memory channel frequency or they will suffer from
reduced performance with little energy gain. We introduce a
novel metric called Discrete Misses per Kilo Cycle (DMPKC)
to capture the sensitivity of running applications.

The main contributions of this paper are as follows:
(1) we introduce DMPKC as a new metric to capture the
sensitivities of the running applications to memory frequency
scaling; and (2) we propose DEMM as a high-performance,
energy-saving DVFS mechanism for the memory system
that dynamically partitions the memory channels across the
concurrently-running applications and assigns frequency levels
to the memory channels. DEMM dynamically adjusts this
partitioning to achieve the optimal assignment of applications
to channel frequencies at each time slice. Starting from the
lowest frequency, it gathers cores (applications) with similar
DMPKC values until the channels at that frequency can be
fully utilized, and then assigns groups with higher DMPKC
values to increasing channel frequencies until all cores have
been assigned. In our experiments, DEMM was able to save
25% of memory energy, and 10% of system energy with only
a 4% loss of performance. We also report a set of results using
multithreaded applications (SPECOMP [5] and SPECJBB[6]).

II. MOTIVATIONAL RESULTS

A. Background

Figure 1 illustrates the high level view of the multicore
system that we target in this paper. In our default system, 32
cores execute co-runner applications and 4 on-chip memory
controllers manage the flow of the off-chip accesses. The
detailed system parameters are given in Table II.
DRAM organization. In Figure 1, the main memory system
consists of 4 channels and each of them is controlled by a
memory controller (MC). One or more DRAM boards, called
dual inline memory modules (DIMMs), are connected to each
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Fig. 1: High level view of our target system.

channel. DRAM chips are placed on the DIMMs and each
chip participates in providing a part of the requested data.
A rank is the subset of the DRAM chips that are activated
for a single off-chip access. Data is stored in 2D memory
arrays (organized as rows and columns) called banks. There
are several banks per DRAM chip. Once data from a bank is
requested, first the corresponding row is loaded into a buffer
called the row buffer, and then the requested portion of the row
data is selected based on the column address. More details on
the DRAM organization can be found elsewhere [7], [8], [9],
[10], [11], [12], [13], [14].
Address mapping. In Figure 1, when a miss occurs in the
cache system (L1 and L2), an off-chip memory request is sent
to one of the MCs via the interconnect module [15]. The target
memory controller is determined based on the mapping of
physical addresses to channels and MCs. Two commonly-used
policies for the channel mapping are cache line interleaving
and page interleaving. In the cache line interleaving policy,
two consecutive cache lines are mapped to two consecutive
channels, whereas in page interleaving two consecutive OS
pages are mapped to consecutive channels. We use the page
interleaving policy in most of our experiments, and carry out a
sensitivity analysis with line interleaving. Under both mapping
policies, the off-chip memory requests generated by an appli-
cation are distributed across the channels, and each memory
controller receives requests from all running applications (we
assume one-to-one mapping between applications and cores).
DVFS in main memory. DVFS can be employed to reduce the
power and energy consumption of the main memory system
in modern multicores [1], [2], [3], [16], [17], [18], [19]. For
instance, the JEDEC standard [20] provides such a mechanism
in emerging memory systems. This mechanism can be used
in three main components of a memory subsystem: memory
controllers (MCs), off-chip buses, and DIMM modules. In
our study, considering real systems, we assume that hardware
lets OS change the frequency of DIMMs, buses and the
voltage/frequency of the MCs. Further, to avoid extra synchro-
nization hardware, we assume that DIMMs and the off-chip
bus operate at the same frequency and the frequency of the
MC is set to double the bus frequency. Note that, the voltage
of the MC is adjusted based on the assigned frequency. The
same assumptions have also been made by prior studies [3].
Therefore, from now on, we refer to one frequency value for
each channel as the channel frequency. Lowering the frequency
and voltage of a channel reduces the background power
(leakage and refresh) and dynamic power (similar to the CPU
DVFS, power ∝ voltage2 × frequency [3]) of the memory

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

800 720 640 560 480 400 320 

N
o

rm
a

liz
e

d
 V

a
lu

e
s
 

Memory Frequency (Mhz) 

Memory Energy Performance 

Fig. 2: Memory energy and the workload performance for
different memory frequencies. The results are normalized to
the base case in which the memory system operates at the
maximum frequency (800 Mhz).

system. However, reducing the frequency also increases the
DRAM access time, bus data transfer time and the memory
request waiting time in MC bank queues [3]. As a result, the
off-chip memory access delay increases. This added delay in
turn affects the execution times of the running applications.
Therefore, although reducing the frequency saves power and
energy in the memory system, the resulting performance loss
should be taken into account.

B. Motivational Results
In this section, we present and discuss the experiments we

ran to motivate our proposed scheme. For these experiments,
we use workload-1 in Table III. We ran this workload on our
default 32-core target system with 4 memory channels, seven
times, each time with a different memory frequency/voltage.
We assume that all 4 memory channels have the same fre-
quency. Figure 2 plots the memory energy consumption and
the workload performance under different memory frequen-
cies. Note that the values are normalized to the base case in
which the memory system operates at its maximum frequency
(800 Mhz in this case). We refer to the “average speedup” of
the workload applications (in terms of IPC) as the “workload
performance”. As expected, the memory energy decreases
with lowering the memory frequency. However, this energy
reduction comes with a performance penalty. For instance,
although the memory energy is reduced about 50% when the
frequency is set to 320 Mhz, there is a 30% performance loss,
implying that the execution times of the applications have
increased about 30%.

As mentioned above, the performance values presented in
Figure 2 are the “average values” across all the applications
in the workload. However, different applications may have
different sensitivities to modulations in the memory frequency.
Figure 3 plots the individual performances of the applications
on this workload, when the memory frequency is set to 720
Mhz. We see that reducing the memory frequency affects the
performance of applications to varying degrees. For instance,
this reduction slows down the application running on core 13
significantly, whereas core 29 remains largely unaffected.

In the experiment above, we assume that all the chan-
nels operate at the same frequency. However, any of the
cores/applications may face performance degradation even
when only the frequency of one of the channels it uses is
reduced, even if all other channels operate at the maximum
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Fig. 3: The slow-downs of individual applications when the
memory frequency is set to 720 Mhz.
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Fig. 4: Distribution of the off-chip accesses across 4 memory
channels in Figure 1 for 6 cores.
frequency. This is because, as mentioned before, the memory
accesses of different cores are typically distributed across all
memory channels according to the address mapping policy
employed by the hardware and, consequently, reducing the
frequency of one of the channels may make the memory
requests coming to that channel become a bottleneck for the
performance of the running applications. Figure 4 plots the
distribution of the memory requests of 6 cores across the
4 memory channels in the previous experiment. As can be
observed, the memory accesses issued by these six cores are
almost evenly distributed across the 4 MCs (each MC receives
around 25% of the total off-chip accesses issued by the same
core).

Based on our observations, next we perform our final
motivational experiment, where we first select a subset of
applications that are not sensitive to the memory frequency
scaling (performance loss < 2% in Figure 3). We find 10
applications in this category, and then map all the pages of
these applications to MC0, one of our memory controllers.
We also map the pages that belong to the other applications
to MC1, MC2 and MC3. By doing this, the off-chip memory
requests are clustered into two groups: MC0 receives the
requests from the non-sensitive applications, and MC1, MC2
and MC3 receive the rest of the requests. In the next step,
we assign frequencies to memory controllers. Recall that,
in Figure 3, the frequencies of all the 4 channels were set
to 720 Mhz. However, in this experiment, the frequency of
MC0 is set to 480 Mhz and the frequencies of MC1, MC2
and MC3 are set to the maximum value (800 Mhz). The
goal here is to reduce the memory energy consumption by
reducing the memory frequency/voltage and, at the same time,
avoid the potential performance loss of sensitive applications
by mapping them to the MCs that operate at the maximum
frequency available. Figure 5 compares the workload energy
and performance in two cases: (1) when no clustering is
used and the frequencies of all the channels are reduced
(Figure 2; 720 Mhz), and (2) when clustering is used. It is
clear from this figure that we achieve better performance and
save more energy (about 7%) by clustering (note that the
values are normalized to the case in which all the memory
channels operate at the maximum frequency). With clustering,
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Fig. 5: The energy saving and the achieved performance loss
reduction by employing our application clustering.
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Fig. 6: The slow downs of the individual applications when
clustering is employed.
the power consumption is reduced by lowering the memory
frequency/voltage, and at the same time the performance loss
experienced by the sensitive applications is limited. As can be
observed from Figure 6, clustering improves the performance
of those applications that lose significant performance when no
clustering scheme is employed (see Figure 3 for comparison).

These results clearly show that clustering of applications
can be used with memory frequency scaling to save energy
without performance penalty. However, there are at least three
issues to be addressed: (1) how to partition applications into
clusters, (2) how to assign memory controllers to clusters; and
(3) how to set frequencies of memories.

III. DEMM
The previous section shows the potential benefits of us-

ing clustering to maximize the benefits of memory system
DVFS. Comparing Figures 3 and 6 clearly highlight the
importance of clustering. However, the reality is a bit more
complex than this, as illustrated in Figure 7. This figure
shows, for two applications from our experimental suite, the
ideal memory frequency they would prefer over a portion of
their execution (measured in epochs). We observe that, the
frequency preferred by the two applications varies significantly
over time depending on the phase behavior. Consequently, a
clustering strategy that sets memory frequencies/voltages to
save energy and minimize potential performance loss should
do it dynamically. Further, we note from this plot that different
applications prefer different frequencies in most of the epochs
and, if they are to share the same memory controller(s) (which
may actually be the case depending on other applications
in the workload), the frequency/voltage of the corresponding
memory (memories) should be selected very carefully to strike
the right balance between energy saving and performance
loss. Considering these observations, we propose DEMM,
which is a dynamic scheme that regulates the memory channel
frequencies (and, correspondingly, voltages) and application
clusters over the course of execution with the goal of saving as
much memory energy as possible with minimal performance
impact. Our approach takes the system performance counters
as input and gives the application clustering decisions and the
corresponding channel frequencies as output. The OS runs the
DEMM algorithm over the execution at fixed time epochs
(intervals) and enforces the output decisions. The hardware
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Fig. 7: The ideal memory frequency for two applications from
our experimental suite.
provides the system performance counters which are used to
identify the sensitivities of the running applications to memory
frequency/voltage scaling.
A. The DMPKC Metric

DEMM first clusters the running applications into different
groups based on the application sensitivities and then assigns
memory channels to the application clusters. At the same
time, the algorithm also determines the values of the frequen-
cies (and corresponding voltages) assigned to the memory
channels. Recall that Figure 3 shows the sensitivities of
applications to memory frequency scaling. We generated this
graph by running our workload twice (once with the maximum
memory frequency as a baseline and once with the reduced
memory frequency) and comparing the results. However, such
a comparison cannot be performed at runtime. Since DEMM is
a dynamic mechanism, the application sensitivities need to be
estimated based on a parameter that can be measured over the
execution. In DEMM, we use a novel metric called Discrete
Misses Per Kilo Cycles (DMPKC) to predict the sensitivity
of each application. DMPKC of an application is defined as
the number of discrete groups of off-chip memory requests (per
thousand cycles) that belong to the same application. A subset
of memory requests is considered a “group” if the difference
between the issue times of any two of the requests in that group
is less than a threshold (DMPKC-th). The DMPKC value is
incremented by 1 for each off-chip memory request group.
This is because our goal is to consider off-chip requests issued
by the same application in parallel in order to estimate the
application sensitivities to the off-chip delay increase coming
from the memory frequency reduction. Figure 8 illustrates how
the DMPKC is defined. In this figure, each dot represents a
cache miss for a given application, and the figure also shows
the time that each last level cache miss occurs. As can be seen,
the MPKC (Misses Per Kilo Cycle) value of this example is 10,
since there are ten misses over 1K cycles. However, only two
groups can be identified in Figure 8 and therefore the DMPKC
value is 2 (the issue times of any two of the requests in each
group is less than the threshold). In DEMM, we assume that
hardware provides the values for this metric. For the hardware
implementation, there is a counter for each core that counts the
number of discrete misses for each application. To count the
number of discrete misses, the hardware monitors the arrival
times of the memory requests and increments the counter for
each request group (not for each request).

In our experiments, we observed that, if two applications
have the same number of misses per thousand cycles, the
application with higher off-chip access parallelism is less
sensitive to the memory frequency reduction since the added
off-chip access delays have less impact on the application
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Fig. 8: An example that illustrates the DMPKC definition.
Each dot represents a cache miss for a given application.

performance if the memory requests of the application are
issued in parallel. Figure 9a plots the correlation between the
average DMPKC values of the 32 applications in our moti-
vational example (in Section II-B) and their performance loss
when the memory frequency is scaled down (each dot in this
plot represents an application). As can be seen, applications
with higher DMPKC values lose more performance. Figure 9b
plots the correlation as in Figure 9a but the x-axis is Misses
Per Kilo Cycles (MPKC) instead of DMPKC. The correlation
now is much weaker, without considering the off-chip access
parallelism.
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Fig. 9: The correlation between the average DMPKC and
MPKC values of 32 applications and their performance loss
when the memory frequency is scaled down to 720 Mhz (each
dot represents an application).
B. Details of the Algorithm

At each time interval, the OS runs the DEMM algorithm
using the DMPKC values of the running applications. Algo-
rithm 1 gives the pseudo-code for DEMM. A brief description
of the parameters used in this algorithm is given in Table I.
Algorithm 1 takes the DMPKC values as input and gives the
frequency of the memory channels (CHANNEL FREQ) as
well as the channel mappings (CORE MAP ) as output. As
an example, if the algorithm maps core i to two memory chan-
nels (channel-0 and channel-1, i.e, CORE MAP [i][0] = 1
and CORE MAP [i][1] = 1), this means that the OS pages
accessed by core i, from this point on, will be mapped to
channel-0 and channel-1. The main loop of the algorithm
(Lines 5-27) terminates once all the channels in the memory
system are assigned to the cores. The algorithm starts working
with the minimum available memory frequency (freq level)
and a minimum DMPKC threshold (dmpkc level). First, it
counts the number of the cores that have DMPKC values less
than dmpkc level (Lines 7-11). Then, get num channels(.)
decides how many channels can be allocated to that number
of cores (we will later discuss the policy we employ for that).
Based on the number decided by get num channels(.), the
cores selected at Lines 7 to 11 are mapped to the available
channels with the freq level frequency. Finally, dmpkc level
and freq level values are incremented for the next iteration
of the main loop. In summary, each dmpkc level has a corre-
sponding freq level, and DEMM assigns one or more chan-
nels (with freq level) to the cores with that dmpkc level (if
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Algorithm 1 DEMM Algorithm
Input: DMPKC[1..C]
Output: CHANNEL FREQ[1..Ch], CORE MAP [1..C][1..Ch]
1: dmpkc level = DMPKC th
2: freq level = FREQ BASE
3: current channel = 0
4: core done[1..C] = 0
5: while current channel < TOTAL CHANNELS do
6: counter = 0
7: for i = 0 to C do
8: if core done[i] == 0 and DMPKC[i] < dmpkc level then
9: counter + +

10: end if
11: end for
12: ch num = get num of channels(counter, C,Ch, freq level)
13: for j = 0 to ch num do
14: for i = 0 to C do
15: if core done[i] == 0 or core done[i] == freq level then
16: if DMPKC[i] < dmpkc level then
17: CORE MAP [i][current channel] = 1
18: CHANNEL FREQ[current channel] = freq level
19: core done[i] = freq level
20: end if
21: end if
22: end for
23: end for
24: current channel = current channel + ch num
25: inc(dmpkc level)
26: inc(freq level)
27: end while

C number of cores
Ch number of memory channels
DMPKC th a constant threshold value (default : 0.6)
FREQ BASE minimum channel frequency (320 Mhz)
CHANNEL FREQ frequency of each memory channel
CORE MAP CORE MAP [i][j] = 1 shows that the OS pages

of core i can be mapped to channel j
core done core done[i] = 0 shows that DEMM has not taken

of core i so far
inc(dmpkc level) increments dmpkc level by 1 level (default : 0.1)
inc(freq level) increments freq level by 1 level

TABLE I: Parameters/functions used by DEMM.
they are sufficient in number to be allocated channels). We
employ the policy used in the channel partitioning scheme
proposed in [21] to determine the number of memory channels
at line 12. This policy is based on the number of cores in
the subset, the total number of cores, and the total number
of channels. If C is the total number of cores and Ch is
the total number of channels, b nC × Chc gives the number
of channels that will be allocated to the n selected cores.
The goal of this policy is to avoid high contention on the
memory channels. For example, if there are 32 applications
in a workload, 2 out of 4 memory channels are assigned to
a set with 16 applications. We want to emphasize that, our
experimental results include all the performance overheads
incurred by the memory contentions caused by DEMM.

C. Example Application of the Algorithm

We now go over an example to show how DEMM works
in practice. Suppose that we have an 8-core machine with 2
memory channels and, at the kth time interval, the DMPKC
values of the running applications are assumed to be as shown
in Figure 10a. We further assume that our base DMPKC
is 0.6 1 and the available memory frequencies are 320, 400,
480, 560, 640, 720 and 800 Mhz. Therefore, dmpkc level
and freq level values start at 0.6 and 320 Mhz, respectively.

1The starting value 0.6 is determined based on the average DMPKC
values we observed in our experiments for the very low sensitive applications.

1 2 3 4 5 6 7 8
Cores

DMPKC 0.4 0.5 0.7 0.8 0.9 1 1.1 1.2

 !"##$%&'  !"##$%&(

(a) Initial state

1 2 3 4 5 6 7 8Cores

 !"##$%&'  !"##$%&(
480 Mhz 800 Mhz

(b) The output of the DEMM algo-
rithm

Fig. 10: An example illustrating how DEMM works.
Processors 32 out-of-order cores with private L1 data and instruction

caches. instruction window size: 128, LSQ size: 64
Private L1 D&I–Caches Direct mapped, 32KB, 64 bytes block size,

3 cycle access latency
L2 Cache 64 bytes block size, 10 cycle access latency

L2 Cache Bank Size 512KB per core
Number of Banks Per 16

Memory Controller
Memory Configuration DDR-800, Memory Bus Multiplier: 5,

Bank Busy Time: 22 cycles, Rank Delay: 2 cycles,
Read-Write Delay: 3 cycles, Refresh Period: 3120,
Memory CTL latency: 20 cycles

Epoch length 5M cycles
Simulation length 100M cycles

TABLE II: Baseline configuration.
At the first iteration, the algorithm finds two cores that have
DMPKC values less than 0.6 (cores 1 and 2). Based on our
employed policy, two cores are not sufficient to be allocated
a channel in this case. So, dmpkc level and freq level are
increased by two more levels to 0.8 and 480 Mhz, respectively,
at which point four cores (cores 1 to 4) have DMPKC values
less than 0.8 and channel-0 is assigned to them. We apply the
same strategy to the rest of the cores and channel-1 is assigned
to them with a frequency of 800 Mhz. Figure 10b shows the
final mapping in our example. However, in this example, if
we assume that the DMPKC values of cores 3 and 5 are 1,
as per the DEMM algorithm, the frequencies of both of the
channels are set to 800 Mhz, since the number of non-sensitive
applications (with low DMPKC) is not high enough to deserve
a channel. In that case, most of the applications are sensitive
and DEMM does not reduce memory frequencies. However,
we can save power by increasing the aggressiveness of DEMM
as will be discussed later in our sensitivity experiments.

D. Discussion

When a running application tries to access a page in the
memory, there are three possible scenarios: (1) The page is
not already allocated and a page fault occurs. In this case,
the page will be allocated in one of the preferred channels
determined by DEMM. (2) The page is already allocated and
resides in one of the preferred channels suggested by DEMM.
No action is taken here, and the page is simply accessed by the
application. (3) The page is already allocated in the memory
but is not located in one of the preferred channels (due to the
changing of the channel mapping over the execution). In this
case, there are two options. One option is to migrate the page
to one of the preferred channels; this leads to TLB and cache
block invalidation, and incurs performance overhead [21]. The
other option is not performing any migration and the page is
accessed from its current location (channel). We chose the
second option due to the performance and power overheads
caused by migration (also quantified in our experimental
evaluation). In DEMM, the initial page mapping is the page
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interleaving policy in which consecutive pages are mapped to
consecutive channels. Although at the beginning, some pages
of sensitive applications may be mapped to slow channels
by employing DEMM, as the application makes progress, the
number of accesses to the old pages reduces over time and the
new pages are allocated to the preferred channels. Also, the
old pages (residing potentially in non-preferred channels) are
not accessed much as the execution progresses (due to page
locality). Further, the sensitivity (behavior) of the applications
does not change very frequently over the course of execution
and therefore, the channel partitioning does not change very
often. Consequently, the overheads caused by the mentioned
problem are not much when we look at the whole execution.
Note also that we avoid unbalanced core-to-memory channel
mapping in our algorithm. Specifically, if the number of cores
is not sufficient to be allocated to a channel, we increase
dmpkc level and freq level to include more cores. Finally,
since in our scheme an application’s data are mapped to a
dedicated set of memory channels, some bandwidth may be
lost; but the impact of it is included in our experimental results.

IV. EXPERIMENTAL EVALUATION
Setup: We use GEMS [22] as our simulation framework. For
calculating the memory system energy, we employ the power
model provided by Micron for DDR3 memory technology
[23]. The Micron power model takes the activity and frequency
as input and estimates the power consumption of the memory
system. Energy numbers are calculated based on the obtained
power numbers and the execution times of the running applica-
tions. Table II gives our baseline configuration. Our baseline
system has 32 cores that run 32 applications and 4 DDR3-
800 memories (channels) connected to 4 memory controllers.
More details on the timing and implementation of the memory
system can be found in [24]. We factor the performance impact
of the memory frequency regulation as the variation in the
access and bus data transfer time. Note that, DEMM can be
employed in the multicores with or without shared caches, and
it captures the sensitivities of the running applications in both
cases by monitoring the off-chip accesses.
Metrics: We compare DEMM against a “base scheme” in
which no clustering is employed and the entire memory system
frequency is varied to obtain the best performance, i.e., all
the MCs operate at the same frequency. Note that this base
scheme is similar to the scheme proposed in [3]) in the sense
that the frequency of all the MCs are changed with the goal
of improving the memory power/performance efficiency. Note
also that, allowing the MCs to operate at different frequencies
(similar to the approach used in [4]) does not improve the
efficiency of our base scheme significantly since, as can
be seen from Figure 4, the memory accesses are uniformly
distributed across the MCs and the memory frequency scaling
of different MCs will have the same impact on the performance
of running applications. Also, although not evaluated in this
work, it is possible to integrate DEMM with core and NoC [25]
voltage scaling techniques to further increase energy savings.

We evaluate the following metrics: memory energy, full-
system energy, performance, and Energy-Performance-Ratio
(EPR). Note that, all the energy, performance, and EPR values

presented in this section are normalized to the case where all
the memory channels operate at the maximum frequency (800
Mhz). To estimate the full system-energy saving, we make the
same assumption as in [3], [26] that, on average, 40% of the
system energy is consumed in the memory system. We use
fair speedup as our metric for performance evaluation. The
Fair Speedup (FS) metric is defined as the harmonic mean of
per application speedup with respect to the baseline:

FS =
N∑N

i=1
IPCbase(i)

IPCscheme(i)

,

where N is the number of applications, IPCbase(i) is the
Instructions-Per-Cycle of application i under assumption that
all the channels operate at the maximum frequency, and
IPCscheme(i) is the IPC of the same application when our
scheme is employed. FS can be used to assess the overall
improvement in IPC values across different schemes. Energy-
Performance-Ratio (EPR) is a metric that captures the ratio
between the amount of energy that is saved and the per-
formance loss of the employed mechanism, and is defined
as EPR = Energy

Performance . As an example, suppose that we
have two schemes, Scheme-1 and Scheme-2, and both save
20% energy but Scheme-1 incurs 10% performance overhead
while Scheme-2 incurs 20%. The EPR values of Scheme-1 and
Scheme-2 would be 0.89 and 1. A smaller EPR value indicates
a better performance-energy efficiency since it implies that
we can save more energy with less performance loss. This
metric in a sense represents a “tradeoff” between energy and
performance; in general, a scheme with an EPR greater than
1 does not represent a good tradeoff, meaning that the energy
savings of that scheme may not worth performance costs.
Workloads: Most of our experiments are performed using
the workloads composed from the applications in SPEC2006
benchmark suite [27]. Table III gives the 30 workloads that
we used in our experiments on our 32-core system (the
numbers in parentheses represent the number of copies for
each application in the workload). The workloads listed in
Table III cover all applications and are categorized into three
different groups based on the “memory intensity” of the
applications: (1) Workloads 1 through 10 (mixed workloads):
in these workloads, half of the applications are memory
intensive (applications with high MPKI) and the remaining
ones are memory non-intensive. (2) Workloads 11 through
20: all applications in this category are memory intensive.
(3) Workloads 21 through 30: none of the applications in
this group is memory intensive. MPKI values representing the
memory intensities of the applications SPEC2006 can be found
in [28] (for these applications, we use 1-to-1 application-to-
core mapping, as they are single threaded). In addition to
these workloads, we also performed a set of experiments with
multithreaded HPC workloads and SpecJBB [6] (in this case,
the application is parallelized over all available cores).
Main Results: Figure 11a plots the memory energy consump-
tion for the workloads given in Table III for the base scheme
and DEMM. Note that the energy numbers are normalized
to the case in which all memory channels operate at the
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maximum frequency. The reflections of these memory energy
savings on the system total energy are shown in Figure
11b. As can be observed from Figures 11a and 11b, the
base scheme and DEMM save, on average, 17% and 24%
memory energy (7% and 10% system energy), respectively,
for our mixed workloads (workloads 1 to 10) by reducing
the memory frequencies. That is, DEMM saves 7% more
memory energy than the base scheme. Recall that our base
scheme is similar to a recently proposed one [3] (the entire
memory system frequency is varied). As shown in Figure 12a,
DEMM saves this energy while incurring, on average, only
about 5% performance loss in the case of the mixed workloads;
in comparison, the average performance loss incurred by the
base scheme is around 13%. This is because DEMM reduces
the performance overhead coming from the memory frequency
scaling by clustering the running applications and partitioning
the memory channels over the execution. DEMM’s clusters can
take advantage of the varied memory demands of applications
in the mixed workload, while the base scheme must subject all
applications to the same channel frequency. Figure 12b plots
the average memory access latency per request when the base
scheme and DEMM are employed for each workload. As can
be seen, DEMM imposes less overhead on memory accesses
as compared to the base scheme. These changes in the off-chip
latency cause the performance variations seen in Figure 12a.

Note that, a major portion of the performance loss caused
by DEMM is because of the memory contention caused by
assigning memory intensive applications to the same channels.
However, as our experimental result show, this performance
overhead is less than the case (base scheme) where no channel
partitioning is performed and the contention caused by lower-
ing the memory frequency affects all the running applications
(sensitive and non-sensitive).

In the case of memory-intensive workloads (workloads 11
to 20), as can be observed in Figures 11a and 11b, the energy
consumption values are not reduced by employing the base
scheme. This is because, there is a high load and pressure on
the memory system; even a slight decrease in the speed of the
memory system (by reducing the frequency) can lead to a sig-
nificant increase in the memory queue latencies and ultimately
to performance loss. Therefore, although reducing the memory
frequency reduces the power consumption, the resulting per-
formance loss increases the total energy consumption for the
base scheme. Again, DEMM saves 7% and 3%, memory and
system energy respectively, by avoiding the performance loss
caused by the frequency scaling. However, even DEMM could
not save energy for some of the workloads, such as workloads
15 and 17, since no non-sensitive application (access pattern)
could be found in any execution epoch.

In general, memory non-intensive applications are less
sensitive to the memory frequency regulations. Therefore,
more energy can be saved by scaling the memory system
frequency. As can be observed from Figures 11a and 11b,
DEMM on average saves 43% and 17% memory and system
energy with 5% performance loss. However, in most of these
(non-intensive) workloads, the same amount of energy and
performance is also saved by employing the base scheme.

M
IX

E
D

workload-1 libquantum(4), leslie3d(4), GemsFDTD(4), soplex(4), as-
tar(4), gobmk(4), calculix(4), bzip2(4)

workload-2 lbm(4), leslie3d(4), sphinx3(4), soplex(4), perlbench(4),
astar(4), sjeng(4), namd(4)

workload-3 mcf(4), xalancbmk(4), leslie3d(4), soplex(4), sjeng(4),
namd(4), gobmk(4), gamess(4)

workload-4 mcf(4), libquantum(4), leslie3d(4), soplex(4), omnetpp(4),
perlbench(4), h264ref(4), dealII(4)

workload-5 lbm(4), libquantum(4), leslie3d(4), GemsFDTD(4), as-
tar(4), gromacs(4), gamess(4), bzip2(4)

workload-6 lbm(4), libquantum(4), leslie3d(4), leslie3d(4), povray(4),
namd(4), dealII(4), bzip2(4)

workload-7 mcf(4), lbm(4), libquantum(4), leslie3d(4), omnetpp(4),
astar(4), gromacs(4), bzip2(4)

workload-8 mcf(4), lbm(4), leslie3d(4), GemsFDTD(4), perlbench(4),
astar(4), perlbench(4), gamess(4)

workload-9 xalancbmk(4), leslie3d(4), GemsFDTD(4), soplex(4), om-
netpp(4), gromacs(4), gamess(4), bzip2(4)

workload-10 mcf(4), lbm(4), xalancbmk(4), leslie3d(4), omnetpp(4),
sjeng(4), povray(4), bzip2(4)

M
E

M
IN

T
E

N
SI

V
E

workload-11 mcf(8), libquantum(8), leslie3d(8), GemsFDTD(8)
workload-12 mcf(8), lbm(8), libquantum(8), leslie3d(8)
workload-13 xalancbmk(8), libquantum(8), GemsFDTD(8), soplex(8)
workload-14 lbm(8), xalancbmk(8), GemsFDTD(8), soplex(8)
workload-15 lbm(8), libquantum(8), leslie3d(8), GemsFDTD(8)
workload-16 lbm(8), libquantum(8), leslie3d(8), soplex(8)
workload-17 xalancbmk(8), libquantum(8), leslie3d(8), GemsFDTD(8)
workload-18 mcf(8), lbm(8), leslie3d(8), sphinx3(8)
workload-19 xalancbmk(8), leslie3d(8), GemsFDTD(8), soplex(8)
workload-20 mcf(8), lbm(8), xalancbmk(8), libquantum(8)

M
E

M
N

O
N

-I
N

T
E

N
SI

V
E

workload-21 astar(4), omnetpp(4), perlbench(4), sjeng(4), povray(4),
h264ref(4), calculix(4), bzip2(4)

workload-22 astar(4), omnetpp(4), perlbench(4), sjeng(4), gobmk(4),
gcc(4), gamess(4), bzip2(4)

workload-23 astar(4), perlbench(4), astar(4), namd(4), gromacs(4),
gobmk(4), gamess(4), bzip2(4)

workload-24 omnetpp(4), perlbench(4), omnetpp(4), astar(4),
gobmk(4), gcc(4), dealII(4), bzip2(4)

workload-25 astar(4), omnetpp(4), perlbench(4), h264ref(4), gro-
macs(4), gobmk(4), dealII(4), bzip2(4)

workload-26 perlbench(4), astar(4), omnetpp(4), astar(4), gamess(4),
calculix(4), bzip2(4), bzip2(4)

workload-27 omnetpp(4), astar(4), namd(4), namd(4), h264ref(4), gro-
macs(4), bzip2(4), bzip2(4)

workload-28 omnetpp(4), astar(4), omnetpp(4), sjeng(4), namd(4),
h264ref(4), gromacs(4), gamess(4)

workload-29 omnetpp(4), omnetpp(4), astar(4), namd(4), namd(4),
gamess(4), dealII(4), bzip2(4)

workload-30 omnetpp(4), sjeng(4), povray(4), namd(4), namd(4),
h264ref(4), gromacs(4), calculix(4)

TABLE III: Workloads used in our 32-core experiments. The
numbers within parentheses indicate the number of running
instances of the corresponding application.

This is because the sensitivities of all the applications in such
workloads are almost the same, and DEMM does not bring
much additional benefit by clustering the applications.

Figures 13a and 13b plot the memory and system EPRs,
which capture both the energy values and performance loss
(shown in Figures 11a, 11b and 12a) together in a single
metric. We see from these plots that, DEMM achieves 11%,
13% and 6% system level EPR improvements for the mixed,
intensive and non-intensive workloads, respectively, as com-
pared to the base scheme. Note that, although the EPR is
improved by 13% for intensive workloads as compared to
the base scheme, the actual value is close to 1, which means
we lose about 1% performance to save 1% system energy.
It should also be observed that non-intensive workloads have
the best EPR savings, indicating that they present the best
opportunity to reduce the memory frequency to save power
without losing much performance.

DEMM is a “dynamic scheme” and varies the application
clusters, channel partitioning and frequencies during execu-
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Fig. 11: Memory and system energy consumption when DEMM and the base scheme are employed.
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Fig. 13: Memory and system EPR values.
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(b) Memory controller frequency
over time (workload-2).
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(c) Epoch 4: memory frequency as-
signments (workload-1).
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Fig. 14: Memory controller cluster/frequency assignments over time.
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Fig. 15: Sensitivity analysis.
tion. To illustrate its dynamic behavior, Figure 14a plots the
frequencies assigned by DEMM to our 4 memory channels
during runtime when workload-1 is running, and Figure 14b
shows the same results for workload-2. Figures 14c and 14d
plot two snapshots of how the channels are partitioned across
the running applications at the 4th, and 15th time epochs for
workload-1. For instance, the frequency shown for core 1 at
the 4th time epoch (Figure 14c) is 800 Mhz and, as shown
in this figure, only MC-2 and MC-3 operate at that frequency,
therefore, core 1 is mapped to MC-2 and MC-3 at the 4th time

interval. At the 15th epoch (Figure 14d), core 1 is assigned
to 720 Mhz but only MC-1 is operating at this frequency, so
core 1 is in the cluster mapped to MC-1.

Sensitivity Results. For the following experiments, we picked
the first 4 workloads from each category (mixed, intensive,
and non-intensive) given in Table III. DMPKC th in the
DEMM algorithm (Algorithm 1) is the main parameter to
tune the aggressiveness in reducing the memory frequency.
This parameter is the initial threshold used to identify the
sensitivities of the applications. To better illustrate the impact
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of DMPKC th on the aggressiveness of DEMM, consider
our example in Figure 10a. The DMPKC th value in this
example is assumed to be 0.6. Therefore, dmpkc level and
freq level are increased by two more levels and reach 0.8 and
480 Mhz, respectively, where four cores (cores 1 to 4) have
DMPKC values less than 0.8 and channel-0 is assigned to
them. However, if DMPKC th is set to be 0.8 instead of
0.6 in this example, at the first iteration in the main loop in
Algorithm 1, channel 0 will be assigned to the first four cores
with the frequency of 320 Mhz. Increasing the DMPKC th
value would result in a lower frequency assignment for channel
0. Generally speaking, DMPKC th can be used as a knob to
control the aggressiveness of DEMM such that more power is
saved by increasing the value of this parameter (since the levels
of the assigned frequencies are reduced) with the cost of losing
more performance. Figure 15a plots the memory EPR values
achieved by DEMM under three DMPKC th values: 0.4,
0.6 (default) and 0.8. As can be observed from this graph, the
impact of changing the DMPKC th values is not the same
across different workloads. For instance, workload-4 benefits
from increasing the DMPKC th value (the memory EPR
decreases), whereas this increase is harmful for workload-21
since the performance overhead is a dominant factor in this
workload. DMPKC th can be used to search for an optimal
point for each workload by adjusting the aggressiveness of
DEMM. In other words, this parameter helps us to explore
alternate solutions that are in the neighborhood of the solution
returned by our algorithm.

As mentioned before, the OS runs the DEMM algorithm
over the execution at fixed time epochs (intervals) and enforces
the output decisions. Our default value for the length of the
epochs is 5M cycles (as indicated in Table II). Figure 15b
gives the results for a set of experiments in which we vary
the epoch lengths (this figure shows the results for the epoch
length of 2M, 5M and 10M cycles). As one can observe from
Figure 15b, the EPR values for some of the workloads such
as workload-4 and 11 increases when the epochs are set to be
smaller (2M cycles). This is mainly because, in these cases,
the epochs are not long enough for DEMM to capture the
sensitivities of the applications based on the DMPKC values
and the sensitive applications may be mapped to slow channels
due to the inaccuracy in estimating the sensitivity. Figure 15b
also shows that most of our workloads are not very sensitive
to the epoch lengths employed. In cases where DEMM has the
same performance for different time epochs such as workload-
14, it would be better to set the epoch length to the largest
value, in order to reduce the overhead of the algorithm (since
the algorithm is run less frequently).

In another experiment, we chose half of the applications
in each of our sensitivity analysis workloads to run on a 16-
core multicore with 4 MCs. Figure 15c plots the memory EPR
values achieved by DEMM for 32-core and 16-core systems.
As can be observed from this figure, in most of the workloads,
more memory EPR is saved with the 16-core system, since,
as the memory load decreases, DEMM has the opportunity
to cluster the running applications and reduce the channel
frequencies with more flexibility.
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Fig. 16: Impact of page migration (normalized w.r.t base
scheme).
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Fig. 17: Results with MPKC (normalized w.r.t base scheme).

Impact of Page Migration. Recall that our default imple-
mentation of DEMM does not migrate pages across memory
channels during execution. Intuitively speaking, this may be an
issue since, as memory channels assigned to an application and
frequency assigned to those channels change over time, some
of the already-placed pages may prefer different channels. In
Section 3.3, we defended of the policy of not migrating pages,
arguing that (1) the number of references to old page gets
reduced over time and (2) page migration is a costly activity.
Nevertheless, we also tested an alternative implementation of
DEMM that does perform page migrations. More specifically,
in this new implementation, whenever a page is not in its
preferable channel, it is migrated to its preferable channel.
Figure 16 plots the total system energy and performance
numbers with migration for the same 12 workloads used above
in our sensitivity experiments (each bar denotes a workload).
One can see that activating page migrations increases energy
consumption as well as performance losses, and therefore,
leaving old pages in their original locations seems to be a
better option.
Results with MPKC. We showed earlier in Figure 9 that
DMPKC correlates much better with performance losses com-
pared to MPKC. Figure 17 plots the energy and performance
numbers if we use MPKC instead of DMPKC . These results
clearly show that MPKC performs much worse than DMPKC,
and therefore, considering off-chip access parallelism is key
to achieving best power-performance tradeoffs. Note that
DMPKC is proposed based on two important observations:
(1) having a slower memory affects the memory aggressive
applications (with high MPKC) more significantly since the
frequency of issuing memory accesses is high, and the execu-
tion progress of these applications depends more on the off-
chip access latency, and (2) an application with higher memory
level parallelism (and with the same MPKC), suffers less from
slower memories. DMPKC considers these two factors at the
same time, whereas MPKC does not, explaining the difference
between the results.
Results with Line-Level Interleaving. Recall that the re-
sults presented so far used page-level interleaving of phys-
ical accesses across memory channels. We also conducted
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Fig. 18: Results with cache level interleaving (normalized
w.r.t base scheme).
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scheme).

experiments with line-level interleaving and the total system
energy and performance loss results are plotted in Figure 18.
Although the memory energy savings are not as high as in the
case of page-level interleaving (due to the fact that memory
accesses are less localized under line interleaving and that in
turn prevents DEMM from employing very low frequencies),
they are still very good, indicating that our approach works
well under both types of address interleavings.
Results with Multithreaded Benchmarks. In our final set
of experiments, we tested the effectiveness of DEMM when
using applications other than SPEC2006. Figure 19 presents
results with five additional workloads. The first four of these
(w1 through w4 in the graph) are workloads drawn from
SPECOMP [5], each having 4 multithreaded applications,
running on 8 cores of our default configuration. The second
is SPECJBB [6], which is a benchmark used to test the Java
server performance. In particular, it evaluates the performance
of server side Java by emulating a three-tier client/server sys-
tem, with an emphasis on the middle tier. In this application,
each thread represents a user that initiates transactions within a
warehouse and we modeled a system with 32 clients (threads).
The results plotted in Figure 19 show that our approach works
well with multithreaded applications too (detailed discussion
is omitted due to lack of space).

V. RELATED WORK

Meisner et al. [29] proposed a scheme in which the load
on a server determines if the server operates in active or
idle mode. There also exist several works on memory energy
management, with the goal of reducing energy consumption
[30], [31], [32], [33], limiting peak power [32], or avoiding
high memory temperatures [34], [35]. [36] and [37] proposed
schemes to mitigate the latency overhead incurred by the
transitions between different power modes. However, as the
number of cores and concurrently running applications in-
creases in multicores, finding the long enough memory idle
periods becomes harder. Further, the performance overhead of
changing the memory power mode needs to be considered
[38] and, as mentioned before, this overhead may differ
across different applications based on their sensitivities to the
latencies seen by the off-chip memory requests. Yan et al. [39]

proposed a scheme where sensitive applications are executed
on a group of processors fed by an on-chip regulator.

DVFS has been employed as a scheme to reduce the
power and energy consumption of main memory systems
in modern multicores [1], [2], [3], [40], [41]. In [2], [42],
DVFS is used for the cores and memory system together
to achieve the specified power budget [43] and minimize
the full system energy consumption [2], [42]. The memory
DVFS schemes employed in these prior studies affect all co-
runner applications when there are multiple MCs in the system
and no channel partitioning is used. In comparison, DEMM
considers the sensitivity of each application individually and
attempts to improve the performance and the efficiency of the
energy saving achieved by the memory DVFS. The scheme
proposed in [4], unlike the DVFS mechanism proposed in
[8] (and discussed in Section I), assigns different frequencies
to different MCs. However, no channel partitioning is done
in this work and therefore lowering the frequency of one
channel affects the performance of all the running applications
(sensitive and non-sensitive). This is because, as shown in
Figure 4, each MC receives memory accesses from all of the
applications. Other prior works such as [44], [45] proposed
new DRAM organizations/architectures and data mapping
schemes to improve the energy efficiency of the main memory.
Note that DEMM does not change the DRAM architecture and
can be employed in parallel with these schemes.

Chasapis et al. [46] address manufacturing variability in
power-constrained NUMA nodes. Page allocation has been
employed as a mechanism to improve the opportunity of
saving memory power and energy [47], [48]. However, page
migration incurs performance overheads in multicores and, in
prior work they do not propose a method to allocate newly-
accessed OS pages.

VI. CONCLUSIONS

We proposed a novel OS-based DVFS technique, DEMM,
which utilizes the DMPKC parameter for monitoring the mem-
ory sensitivity of applications for dynamically partitioning
the applications into different clusters, assigning clusters to
memory channels, and modulating the frequencies of memory
channels for optimizing energy conservation at the cost of
minimal performance penalty. With the default values of our
simulation parameters, DEMM provides around 25% saving in
the memory system energy and 10% saving in the total system
energy, with only a 4% loss in workload performance. Our
ongoing work is on comparing DEMM with memory power
capping. We are also interested in testing our approach under
SMT cores.
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