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ABSTRACT
Data access costs dominate the execution times of most parallel
applications and they are expected to be even more important in
the future. To address this, recent research has focused on Near
Data Processing (NDP) as a new paradigm that tries to bring com-
putation to data, instead of bringing data to computation (which
is the norm in conventional computing). This paper explores the
potential of compiler support in exploiting NDP in the context of
emerging manycore systems. To that end, we propose a novel com-
piler algorithm that partitions the computations in a given loop nest
into subcomputations and schedules the resulting subcomputations
on di�erent cores with the goal of reducing the distance-to-data on
the on-chip network. An important characteristic of our approach
is that it exploits NDP while taking advantage of data locality. Our
experiments with 12 multithreaded applications running on a state-
of-the-art commercial manycore system indicate that the proposed
compiler-based approach signi�cantly reduces data movements
on the on-chip network by taking advantage of NDP, and these
bene�ts lead to an average execution time improvement of 18.4%.
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1 INTRODUCTION
As many applications are increasingly being dominated by the cost
of data movement (as opposed to the cost of arithmetic/logic oper-
ations), we witness a shift from the traditional “compute-centric”
model to a more “data-centric” model, where the primary goal is to
bring computation to data, instead of the other way around. This
shift has led to a new computing paradigm, namely, “Near-Data
Processing” (NDP), and we already see its various incarnations
across di�erent architectures and application domains [2, 9, 12, 22,
36, 40, 48, 52, 53, 58].
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To fully evaluate the potential of NDP, one needs to consider it
from multiple angles, including but not limited to programming
aspects, compiler support and system-level modi�cations. While
most of the existing work on NDP has either focused on single-core
systems [10, 20], storage subsystems [55, 56, 65] or systems that em-
ploy inter-chip parallelism [14, 48, 54, 61], a single manycore chip
can also present signi�cant opportunities for taking advantage of
NDP. In particular, di�erent cache hits on a large, on-chip network
based manycore can have signi�cantly di�erent latencies depend-
ing on the distance between the requesting core and the cache that
contains the requested data. Similarly, the distance between a last-
level cache and a memory controller can be a major determinant of
the latency of the last-level cache misses. In a sense, a di�erent ver-
sion of the NDP-related problems observed in large-scale systems
is also observed in a single manycore chip.

Motivated by this, the main goal of this paper is to explore the
potential of “compiler support” in exploiting NDP in the context of
data-intensive and loop-dominated applications. We believe that, if
the architectural details of the target manycore system could be ex-
posed to it, a compiler can employ various computation and/or data
reorganization techniques to exploit the opportunities presented
by NDP. To that end, we propose and evaluate a novel compiler
algorithm that “partitions” the computations (e.g., program state-
ments) in a given loop nest into “subcomputations” and schedules
the resulting subcomputations on di�erent cores with the goal of
reducing the “distance-to-data”. As opposed to the conventional
optimizations that try to bring data to computation, our approach
tries to bring (by scheduling subcomputations close to where data
are) computations to data. To do so, it employs “data movement” as
a �rst-class optimization metric. However, minimizing data move-
ment through subcomputation scheduling may lose the opportunity
for reusing the data (from the L1 cache) in subsequent program
statements. To address this, our approach also takes data locality
into account when considering multiple statements together. That
is, our approach targets both NDP and data locality. Our contribu-
tions can be summarized as follows:
• Focusing on multithreaded applications running on on-chip net-
work based manycore systems, we explain the potential bene�ts
of careful computation partitioning in terms of data movements
on the network. We argue that computation partitioning can be
an e�ective knob in realizing NDP.

•We propose a compiler algorithm that takes a loop nest to be
executed on an on-chip network-based manycore, partitions it
into subcomputations, and assigns each subcomputation to a core
where NDP could be exploited. We formulate the problem of ex-
ploiting NDP as a Minimum Spanning Tree (MST) problem, and
our compiler solves it using Kruskal’s algorithm. Moreover, we
explain how our approach takes advantage of L1 cache locality to
further reduce data movements when considering multiple nearby
program statements (e.g., those in a loop body) together.
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•We present experimental evidence showing the e�ectiveness of
the proposed compiler-based approach. Our experiments with 12
multithreaded application programs running on a state-of-the-
art on-chip network based manycore indicate that the proposed
compiler-based approach signi�cantly reduces data movements
on the on-chip network, and these reductions lead to an average
execution time improvement of 18.4%. The results also indicate
that our savings are consistent across the di�erent values of the
major con�guration parameters of our target manycore platform.
We believe this is the �rst fully-automated compiler support

targeting NDP/data movement in the context of data-intensive ap-
plications running on commercial manycores. The remainder of
this paper is organized as follows. The next section gives back-
ground on on-chip network based manycore systems and physical
address mappings they employ. Section 3 formulates data move-
ment problem we target and Section 4 gives a compiler algorithm
that employs data movement minimization as its main optimization
metric. We go over several examples in Section 5 to explain how
our compiler algorithm works in practice. Section 6 presents our
experimental results, and Section 7 discusses the related work. We
conclude the paper in Section 8 and brie�y mention the planned
future work.

2 BACKGROUND
Our target platform is an on-chip network based manycore archi-
tecture with M ⇥ N nodes, as shown in Figure 1. Each node of
this architecture contains a core, a private L1 cache, and a bank
of L2 cache (our last-level cache). The entire shared L2 cache is
divided into banks that are distributed among nodes. We assume an
SNUCA [33] type of cache organization in our approach, but our
approach can be modi�ed to work with other distributed on-chip
cache management schemes as well. In SNUCA, each data block is
statically mapped to an L2 cache bank (home bank) based on its
physical address. A node that requests a speci�c data item brings
it from its home bank. To facilitate our explanation, each node is
labeled with (x , �), which indicates the location of the node in the
on-chip network. When no confusion occurs, we use the term “n� ”
to denote the home node for data “�”. Memory controllers (MCs)
are attached to the corner nodes.

MC MC

MC MC

L1

L2

Core

L1 $

L2 $ Bank

Router

node

Figure 1: An example manycore architecture and memory
access �ow.

A typical data request in this architecture is handled as follows.
When an L1 miss occurs, the request is forwarded to the node that
has the home L2 bank (shown as 1 in Figure 1). If hit in home L2
bank, it is sent back to the L1 cache ( 5 ). Otherwise, an L2 miss is
forwarded to the target MC ( 2 , 3 ). The MC schedules the request
and sends the corresponding data to the home L2 bank ( 4 ), and
subsequently to the L1 cache of the requesting core.(note that, in
general, the requesting core and the home L2 bank are in di�erent

nodes). There are two time-consuming periods involved in a mem-
ory access: 1) time spent on traveling over the on-chip network,
and 2) time spent on accessing the o�-chip memory. The former is
a function of three factors: the number of network links to traverse,
the data volume, and the congestion on the network. In this paper,
our goal is to reduce the values of the �rst two factors by exploiting
NDP.

We use Manhattan distance between two nodes in the on-chip
network to measure the data movement distance. Given two nodes
ni, j and nx,� with location labels (i ,j) and (x ,�), the data movement
distance between ni, j and nx,� is de�ned as:

MD(ni, j ,nx,� ) =| i � x | + | j � � |.
This distance gives the “minimum” number of links that need to
be traversed from ni, j to nx,� . A long data movement distance can
hurt performance because of two reasons. First, a longer distance
increases the latency on the network, and second, it also increases
chances for contention.

0
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(a) Cacheline-level mapping at
L2 cache.
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(b) Page-level mapping at mem-
ory bank.

Figure 2: Physical address mapping.

Physical address mapping de�nes how the physical address space
is distributed across multiple shared components (e.g., L2s, memory
channels, banks). There are two popular address mapping strategies:
1) cache line-granularitymapping, and 2) page-granularitymapping.
Each of these mappings can be used for mapping addresses across
di�erent components such as cache banks and memory banks.1.
Figure 2a depicts a cache line-granularity mapping of addresses
over L2 caches, where a bank of the L2 cache is indexed using 5 bits
(bits 6, 7, 8, 9 and 10). Figure 2b gives a page-granularity mapping of
physical addresses over 4 memory controllers (channels), 4 memory
ranks per channel, and 8 memory banks per rank. The least 12-bits
of a physical address represent the o�set, assuming a 4KB page. The
next 2 bits (bits 12 and 13) represent the channel ids. In a speci�c
channel, 2 bits (bits 14 and 15) are used to identify 4 individual ranks.
Finally, 3 bits (bits 16, 17 and 18) represent the related memory
banks.

Note that the manycore architecture de�ned above represents a
“template" and our approach is still applicable when the values of
the speci�c components of this template are varied. For instance,
we can work with any type of on-chip cache hierarchy, any type of
on-chip network topology, any type of last-level cache management
scheme, and any type of o�-chip memory request scheduling policy.

3 DATA MOVEMENT AS A MINIMUM
SPANNING-TREE PROBLEM

3.1 Importance of Computation Partitioning
One of the important tasks in executing computations on any many-
core system is to partition them across cores/nodes. Recent litera-
ture contains many papers [4, 18, 28, 35] that try to do this parti-
tioning targeting various metrics such as latency, throughput, and
power consumption. One of the other potential metrics is reducing

1For example, one can distribute addresses at a cache line or page granularity over
caches, and similarly, at a cache line or page granularity over memory banks.
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the distance (in terms of the number of links in the on-chip net-
work) between the requesting core/node and the node (the L2 bank)
that contains the requested data. However, all existing partitioners
today targeting loop-based computations perform this assignment
at an “iteration granularity”, no matter what objective function
they have. That is, the minimum unit of computation assigned to a
core is a “loop iteration”. The core that is assigned a loop iteration
is responsible for bringing all the input data (which may involve
a lot of data transfers over the on-chip network), computing the
result, and storing the result in the store node (i.e., the home node
for the output data in SNUCA). Clearly, this standard (default) way
of assigning computations to cores can lead to 1) a high volume of
data traveling over the network and 2) a large number of network
links being traversed.

In this work, we consider a novel approach to reduce data trans-
fer costs in emerging manycore processors. Our approach tries to
minimize both the data volume and the number of links by perform-
ing computation partitioning (assignment) at a “subcomputation”
granularity. More speci�cally, our scheme partitions a program
statement (which may be in a loop body) into subcomputations
and performs each subcomputation in a core/node that results in
the “minimum” data movement. Also, whenever possible (i.e., per-
missible by data dependences), subcomputations are performed in
parallel and the correctness of execution is guaranteed via carefully-
placed synchronizations. To capture both data volume and distance,
we formally de�ne data movement as follows:

Data Mo�ement =

m’
i=1

sizeo f (Vi ) ⇥MD(nVr eq ,nVi ), (1)

wherem denotes the total number of input data, and nV denotes
the node id in the on-chip network. For each input data Vi in a
statement, data movement, our primary target metric in this work,
is computed as the data size of Vi multiplied by the Manhattan
distance between nVr eq (the node requesting Vi ) and nVi (the node
contains Vi ). As long as the size of Vi is constant, we omit it in our
discussion, and use the expressions “data movement”, “network
footprint”, and “number of links traversed” interchangeably.

In the default execution (i.e., when not using our approach), the
requesting node nVr eq must be the node where the original compu-
tation is performed. We relax this constraint in our optimization
where the target node can be an intermediate node performing a
“subcomputation”.

To better explain the concept of data movement, let us consider
a statement in one loop iteration (e.g. ith iteration):

A(i) = B(i) +C(i) + D(i) + E(i).
As shown in Figure 3, the input data (which are all of the same size)
are assumed to be present in the L2 caches of the corresponding
home nodes (if not, the data would be present in memory banks but
a similar analysis applies to that case too). In the default execution,
all of the input data (B(i), C(i), D(i), and E(i)) are fetched into
nA(i) for computation and the �nal result is stored in nA(i) (i.e., the
node nA(i) is also assumed to be the node to which computation
of A(i) = B(i) + C(i) + D(i) + E(i) is assigned). As a result, we
have 13 data movements based on Equation (1) (i.e., the number
of links visited is 13). However, one can observe that there are
overlapping network paths while fetching each input data to nA(i).
Speci�cally, B(i) and E(i) traverse the same two links from nB(i) to

A(i)

B(i) E(i)

D(i)

C(i)

Figure 3: Data ac-
cess for A(i) = B(i) +
C(i) + D(i) + E(i).
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Figure 4: Formulation of NDP as MST.

nA(i) ( I ). Therefore, instead of loading B(i) and E(i) individually,
we can compute B(i) + E(i) in nB(i) and send the result to nA(i).
Clearly, doing so reduces the data movements by 2. Similarly, we
can perform C(i) + D(i) in nD(i), and consequently reduce 3 data
movements ( II ). As a result, the total amount of data movement is
reduced to 8.

3.2 Minimizing Data Movement
We formulate the problem of minimizing data movement on the
on-chip network as a Minimum Spanning Tree (MST) problem and
solve it using Kruskal’s algorithm. It is important to emphasize that,
for now, we apply our MST solution to each single statement in
isolation. Later, we will discuss how multiple statements are con-
sidered together to take advantage of both NDP and data reuse. We
believe that MST is a very good �t for our data movement problem
because minimizing data movement essentially means minimizing
the number of on-chip network links that need to be traversed
by data elements. We build a complete graph for each program
statement in a given loop iteration. In such a graph, the “vertices”
represent “nodes”, the “edges” represents “network links”, and the
“weight costs of edges” represent “network distances” between two
nodes. We use Kruskal’s algorithm to �nd the MST that connects
all the vertices together with a minimum cumulative edge weight,
which gives us the minimum data movements on the network. For
example, Figure 4a shows the generated complete graph for same
statement used in Figure 3. The weight costs labeled on edges are
the Manhattan distances between nodes where the data locates.
The resulting MST is illustrated in Figure 4b, with the minimum
edge costs, which also means the minimum data movement.

3.3 Exploiting Data Reuse

A(i)

B(i)

E(i)

D(i)

C(i)

2 3

1 2
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3
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(a) Single-statementMSTs of
2 nearby statements.
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Y(i)1

3
A(i)
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1 2

(b) Multiple-statement
MSTs with data locality.

Figure 5: Data reuse aware MST formulation.
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An important observation is that, considering multiple state-
ments (statement instances2) at the same time allows us to 1) exploit
data reuse across nearby statements, and 2) further reduce the num-
ber of on-chip network links to be visited by taking advantage of L1
cache hits. For example, Figure 5a shows two MSTs that belong to
two neighboring statements. Note thatC(i) is reused by statement-2
(X (i) = C(i)+Y (i)) after statement-1 (A(i) = B(i)+C(i)+D(i)+E(i)).
IfC(i) +D(i) in statement-1 is scheduled on node nDi . That is,C(i)
is fetched to nDi and placed into the L1 cache of nDi . Therefore,
nDi is also considered havingC(i) in its L1 cache when we generate
the MST for statement-2. Figure 5b depicts the MST when using
nDi for statement-2. The total data movement of the two statements
is reduced compared to the case where C(i) is fetched from nCi to
nY i for computation.

4 COMPILER ALGORITHM
In this section, we discuss the details of our proposed compiler
framework The goal of our approach is to 1) minimize the data
movement of on-chip network for each single statement in a loop
nest, 2) exploit L1 cache data locality acrossmultiple statements, and
3) balance the computation across all the cores. There are three ma-
jor steps of our approach (Algorithm 1): 1) data location detection,
2) single statement splitting, and 3) subcomputation scheduling.

4.1 Data Location Detection
We build a graph for each program statement to facilitate our sub-
sequent optimizations. To build that graph, the very �rst task is
to determine the nodes holding the data involved in a statement.
We derive the on-chip network location of each program data by
calling a GetNode function (line 11). This function takes two pa-
rameters: 1) a variable (data) and 2) a variable-to-node mapping
structure. The latter is used in the multi-statement case (discussed
later) to indicate the nodes that contain the requested data in their
respective L1 caches (i.e., the data have already been fetched into
the node due to the previously-scheduled subcomputations). In
SNUCA, the L2 bank bits and memory channel bits in a physical
address (as illustrated in Figure 2) determine which on-chip node
(L2 cache bank) and memory controller hold the requested data. To
prevent the memory channel bits from changing during the virtual
address-to-physical address (VA-to-PA) translation, we need help
from the OS. Normally, physical page allocation is performed by
the OS APIs using a page-coloring based algorithm. We modify this
API to preserve the cache bank and memory channel bits from the
virtual address while allocating the physical pages. In other words,
the OS support guarantees that our compiler infers the on-chip
data location from its virtual address. Obviously, the requested data
may not always be in the on-chip cache. We use a cache miss pre-
dictor [11] for L2 cache. If the predictor detects that the requested
data is an L2 miss, the related MC is used as the location of that
data.

4.2 Single Statement Splitting
With this knowledge of the location of data, we use Kruskal’s al-
gorithm (between lines 20 and 29 in Algorithm 1) to generate an
Minimum Spanning Tree (MST), which gives the minimum possible
2We use the term “statement instance” to refer to the execution of a statement in a
given loop iteration. Consequently, a given (static) program statement can have as
many instances as the number of iterations that enclose it.

Algorithm 1 NDP-aware subcomputation scheduling
INPUT: Number of nodes (N); Statement (Sk (j))
OUTPUT: Subcomputation-to-node mapping
1: function S�����_S��������_S��������(N, Sk (j), variable2node_map)
2: //Initialization
3: MSTed�es  ú
4: //Parsing the variables in Sk (j) and form the nested set considering op priority and paren-

theses
5: Var iableSets  �ar iable_parsin�(Sk (j))
6: while from innermost setV setx inVar iableSets do
7: NodeSet  ú
8: Ed�eSet  ú
9: for each elementVi inV setx do
10: //nodeVi can be a single node or a set of nodes.
11: nodeVi  GetNode(Vi , �ar iable2node_map)
12: if nodeVi not in NodeSet then
13: NodeSet  NodeSet [ nodeVi
14: for nodeVk in NodeSet do
15: MD = Manhattan_distance(nodeVk , nodeVi )
16: Ed�eSet = Ed�eSet [ (nodeVk ,nodeVi , MD)
17: end for
18: end if
19: end for
20: //Solve the MST problem using Kruskal’s algorithm.
21: Sort Ed�eSet in increase order based on MD.
22: while each (nodeVi , nodeVj , MD) in Ed�eSet do
23: seti = �etSet (nodeVi )
24: setj = �etSet (nodeVj )
25: if seti , setj then
26: MSTed�es = MSTed�es [ (nodeVi , nodeVj , MD)
27: seti [ setj
28: end if
29: end while
30: end while
31: returnMSTed�es
32: end function
33: //Scheduling
34: �ar iable2node_map  ú
35: for j from 0 to the size of statement_window do
36: MSTed�esk (j) = Sin�le_Statement_Split t in�(N , Sk (j),
37: �ar iable2node_map)
38: �ar iable2node_map [ (Sk (j), NodeSet (Sk (j))
39: end for
40: for j from 0 to the size of statement_window do
41: whileMSTed�esk (j) . ú do
42: pick up nodes only has one edge inMSTed�esk (j)
43: while (nodes , noden, MD) inMSTed�esk (j) do
44: remove (nodes , noden, MD) fromMSTed�esk (j)
45: if workload_balance(noden ) then
46: doVs op Vn on noden
47: end if
48: if noden is store node then
49: break
50: end if
51: mark nodes as visited child node
52: if noden has child nodes not visited then
53: break
54: end if
55: nodes  noden
56: end while
57: end while
58: end for

total edge weight. Recall that edge weights indicate data movements
(Section 3.2). Thus, the minimized total edge weight gives us the
minimized total data movement for a program statement. Note
that a program statement may contain di�erent (arithmetic and
logical) operators and/or parentheses which force certain priori-
ties on computations. To support such computation priority, we
employ a “level-based” optimization strategy. Speci�cally, all data
accessed by a program statement are classi�ed into nested sets (line
5). The computation priority degrades from the “innermost” set to
the “outermost” set. Starting from innermost set to outermost set,
we generate MST in each level and consider the already-processed
set as a “single component” in the next level. For example, let us
consider the following statement: x = a ⇤ (b + c) + d ⇤ (e + f + �).
The nest sets after data classi�cation is (a, (b, c),d, (e, f ,�)), based
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on the computation priority and parentheses. First, an MST is gen-
erated for (e, f ,�). Second, an MST is generated for (b, c). Next, an
MST if generated for (a, (b, c),d, (e, f ,�)), considering both (b, c)
and (e, f ,�) as two “single” components. This level-base optimiza-
tion guarantees program correctness.

4.3 Subcomputation Scheduling
Now we answer the question of where to schedule the subcom-
putations so that the data movement is minimized as speci�ed in
the related MST. We discuss our scheduling strategy for the single
statement and multi-statement cases separately, as the latter case
presents opportunities for both NDP and data locality.
Single statement: The rule of subcomputation scheduling for a
single statement is that each edge in the MST should be traversed
only once so that the total data movement is minimized. We start
by picking a leaf node in the MST, as our start node (nodes ). We
follow the edge to its parent node (noden ) and schedule the subcom-
putation on noden . We then move from noden to its parent node
until we reach a node that has more than one child nodes. Such
a node with 2 or more child nodes indicates that it needs a “syn-
chronization” to wait for the results of the subcomputations from
all its child nodes, before it can compute. Once all subcomputation
results are collected on that node, our algorithmmoves forward and
�nally reaches the last node where the �nal result is stored. Note
that subcomputation scheduling at a single-statement granularity
maximizes NDP by minimizing the number of links traversed by all
the data accessed by the statement.
Multiple statements:While single statement optimization mini-
mizes data movement, considering multiple statements together al-
lows us to take advantage of “inter-statement” data locality. To sup-
port the optimization of multiple statements, we employ a window-
based algorithm for subcomputation scheduling. We leverage our
algorithm to take into account all the statements in a window by
exploiting a �ariable2core_map (line 34) structure. This compiler-
de�ned data structure tells which nodes have already-scheduled
subcomputations that require the same data block. That is, the re-
quested data blocks are most likely presented in the L1 cache of
those nodes. This information is then used for constructing the
subsequent MSTs, and as a result, the constructed MSTs bene�t
from both NDP and data reuse.

While di�erent “window” de�nitions are possible, in this work,
a window contains a number of “consecutive program statements”,
which may or may not belong to the same loop iteration. For in-
stance, in a loop nest with 4 statements in its body, a window of
size 4 means that each window contains one iteration. Hence, all
4 statements that belong to the same loop iteration are considered
together when we perform our computation partitioning and sub-
computation placement. On the other hand, for the same loop nest,
a window size of 2 means that the �rst window will contain the �rst
two statements to be executed by the �rst loop iteration, the second
window will contain the remaining two statements to be executed
by the �rst loop iteration, and the third window will contain the
�rst two statements to be executed by the second loop iteration, and
so on. As another example, a window size of 8 indicates that each
window will contain all the statements that belong to 2 consecutive
loop iterations.

It is to be observed that our approach in a sense considers the
impact of a potential L1 miss as a “data movement cost”. More
speci�cally, if we miss in L1, we will go to the home bank/node of
the requested (missed) data and fetch it, which means visiting some
network links (data movement). Consequently, in any window size
of more than 1 statement, when we place a subcomputation of a
statement into a node by considering a potential L1 hit in that node
(due to the fact that a previous subcomputation has accessed the
same data), what we actually do is to reduce the data movement
(network footprint). This is because, if the subcomputation would
be placed into another node (instead of the one that would generate
an L1 hit), we would incur extra data movements to bring the data
from its L2 home to another L1. Thus, we can conclude that, in our
approach, the costs of all on-chip cache activities are measured in
terms of data movements.

4.4 Impact of Window Size
The window size in our algorithm determines the scope of schedul-
ing. The minimum window size is 1, corresponding to the single
statement optimization. Although the single statement optimiza-
tion is certainly ideal from an NDP perspective for each single
statement, it does not capture the data reuse opportunities with
the nearby statements. On the other extreme, a very large window
size3 considers a large number of statements together and can thus
potentially exploit more data locality (L1 hit) opportunities, but it
has several drawbacks. First, the compilation complexity increases
as the number of statements in a window increases. Second, an ideal
scheduling may not exist with a large window size. For example,
let us assume that there are 10 statements sharing a particular data
element x . It is possible that the �rst �ve statements prefer moving
x to n1, whereas the remaining �ve statements prefer moving x to
node n2. If we consider all 10 statements together, we cannot �nd
an ideal location (node) to accommodate both constraints. Third, a
very large window size may bring negative e�ects while exploiting
NDP and data reuse due to the L1 cache pollution. For example,
a data block might be evicted from a node’s L1 cache, due to the
fact that the subcomputation requesting that data block is executed
too late in a large window case. Therefore, identifying a proper
window size is non-trivial and requires a careful consideration of
the tradeo� between NDP and data locality.

To determine a proper window size, we implement a “prepro-
cessing step” in our compiler before the scheduling of any subcom-
putation is �nalized. More speci�cally, we initialize the window
size to 1 statement as our initial con�guration, and compute the
resulting data movements. We then increase the window size to
2 statements, repeat the same process and determine the number
of data movements. As discussed above, we take into account L1
locality as well (since now we consider two statements together).
We continue in this fashion until we compute the number of data
movements that would be experienced if we use 8 statements as
our window size.4 Finally, among all the window sizes checked, we

3In the extreme case, the loop nest being optimized can be completely unrolled and
the resulting loop body – with all the statement instances in it – can be considered as
one gigantic “window”.
4We could not �nd any loop nest in our application programs, for which a window
size of more than 8 program statements generated the best result.
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prefer the one that minimizes the total data movements and �nalize
our subcomputation scheduling accordingly.

It also needs to be noted that, each window size means a di�erent
way of grouping program statements in a loop. For example, in a
loop body with 1 statement, a window size of 2 assigns statement
instances into groups where each group has 2 statement instances
(e.g., the �rst group/window will have the statements that will be
executed by the �rst two iterations), and similarly, a window size
of 3 means that the statement instances are divided into groups of 3
(statement instances). Consequently, two statement instances that
would be in the same group (window) when using a smaller window
size can map to di�erent windows when using a larger window
size, and as a result, we may miss the opportunity of exploiting the
data reuse between them (if there exists one). The last example of
Section 5 illustrates this scenario for a loop whose body contains 4
statements. This is why, instead of working arbitrarily with a very
large window size, our algorithm considers di�erent window sizes
before �nalizing the subcomputation scheduling.

4.5 Load Balancing, Parallelism,
Synchronization, and Code Generation

Load balancing: Our optimization partitions a program statement
into subcomputations and assigns each subcomputation to a node
with the goal of minimizing data movements. If we perform this
assignment without considering the loads of the individual nodes,
it is possible that some nodes would take a large amount of sub-
computations, whereas some other nodes would be lightly-loaded,
leading to workload imbalance across nodes. To address this po-
tential problem, our approach works in a load-balancing manner.
Recall that subcomputations are assigned to di�erent nodes while
going from the leaf nodes to the parent nodes on an MST. The com-
piler considers the number of subcomputations already assigned to
each node when deciding where to assign new subcomputations5.
Our scheduler assigns a subcomputation to a node only if the target
node satis�es: 1) the minimum data movement requirement and
2) the resulting workload is balanced. Speci�cally, if assigning a
subcomputation to a node would cause that node taking more than
10% (a con�gurable parameter in our implementation) extra load
than the next highly-loaded node, our scheduler skips this node
and moves to the next one.

A(i)

B(i)E(i) D(i) C(i)

+ +

+
XX(i) = B(i) + E(i) YY(i) = C(i) + D(i)

A(i) = XX(i) + YY(i)

Node B(i) Node D(i)

Node A(i)

sync

Figure 6: Subcomputation
scheduling and synchro-
nization.

A(i)

B(i)E(i) D(i) C(i)

+ +
+

F(i)

*
G(i)

S1: A(i) = B(i)+C(i)+D(i)+E(i)  
S2: G(i) = F(i)*A(i)

S1

S2

Figure 7: A case with
two statements having
an inter-statement de-
pendency.

5The cost of subcomputations is measured as the number of operations, except that
division is considered 10x costlier compared to addition/multiplication.

Intra-statement parallelism and synchronizations:
We now discuss our approach from the perspective of “intra-

statement parallelism”. Given an example statement A(i) = B(i) +
C(i) + D(i) + E(i), as shown in Figure 6, our approach breaks it
into subcomputations XX (i) = B(i) + E(i), YY (i) = C(i) +D(i), and
A(i) = XX (i) + YY (i). As a result, XX (i) = B(i) + E(i) and YY (i) =
C(i)+D(i) are scheduled on di�erent nodes and they are executed in
parallel. In other words, our approach introduces more parallelism
compared to the original execution ofA(i) = B(i)+C(i)+D(i)+E(i).

To ensure the correctness of program execution, “synchroniza-
tions” are needed among subcomputations. As illustrated in Figure 6,
nA(i) needs a synchronization barrier in order to get the updated
values of XX (i) and YY (i) before computing A(i) = XX (i) + YY (i).
While these (point-to-point) synchronizations can have a negative
impact on performance, we handle synchronizations using two
strategies that help us minimize their penalties on performance.
First, our approach compensates the synchronization overhead by
taking advantage of subcomputation-level parallelism whenever
it is possible to do so. Second, we implemented in our compiler a
“transitive closure” based synchronization minimization strategy to
remove redundant synchronizations. Our strategy is, at a high level,
based on the scheme discussed in [51]. However, while the strat-
egy in [51] targets synchronizations due to shared data accesses,
our implementation targets synchronizations due to subcomputa-
tions. Speci�cally, our compiler builds a “synchronization graph”
where each node corresponds to a subcomputation instance (i.e., a
subcomputation parameterized by loop variables) and there is an
edge (called “synchronization arc”) between two subcomputation
instances, suba and subb , if a synchronization is needed between
them (say, from suba and subb ). Let us now assume that there is a
chain of synchronizations involving subcomputations sub1, sub2,
· · · subr�1, subr . Assume further that there is also another chain
that includes only sub1 and subr . In this case, this latter synchro-
nization is redundant as it is already captured by the �rst chain. Our
compiler detects and drops such redundant synchronizations. In our
experiments, we explicitly quantify both subcomputation-level par-
allelism and synchronization overheads. Further, the performance
improvements reported in this paper include all the synchronization
overheads brought by our approach.
Inter-statement dependencies: There can be inter-statement de-
pendencies (�ow/anti/output dependencies) among consecutive
statements, and such dependencies can limit the potential instruc-
tion level parallelism (ILP). However, inter-statement dependencies
pose no problem for our optimization because of two reasons. First,
we do not migrate the �nal result to another node. The �nal output
data is stored on the same node where it was supposed to be without
our optimization. This guarantees that, in a �ow dependency for
example, the subsequent statement will get the updated value. Sec-
ond, our scheduler captures the inter-statement dependencies and
inserts necessary synchronizations. Figure 7 gives an example of an
MST having a window size of two statements. A �ow dependency
due to A(i) exists between the two statements. As our scheduling
traverses the MST,A(i) is computed before the computation ofG(i).

Let us also brie�y discuss how our approach handles “may-
dependences”. In our target applications, may-dependences can
occur mainly in two scenarios. First, if there is a dependence across
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for(i=0; i<n; i++)
{
S1: A(i) = B(i)+C(i)+D(i)+E(i)
S2: X(i) = Y(i)+Z(i)+C(i)
}

Node i:
{
S1: A(i) = B(i)+C(i)+D(i)+E(i)
S2: X(i) = Y(i)+Z(i)+C(i)
}

(a) Sample loop and default
node assignment.

Node i:
sync(BB(i)) and sync(DD(i))
A(i) = BB(i) + DD(i)
sync(ZZ(i))
X(i) = Y(i)+ZZ(i)

Node i1:
BB(i)= B(i)+C(i)
ZZ(i)= Z(i)+C(i)

Node i2:
DD(i)= D(i)+E(i)

(b) Code after our optimiza-
tion.

Figure 8: High-level view of code generation.
a conditional (i.e., the statement after conditional depends on the
statement before that conditional), we copy and schedule the con-
ditional together with the subcomputations to preferable nodes.
Although doing so may introduce additional data fetches due to
the duplicated conditionals6, conditionals in nested loop-bodies
are rare in our target applications. But, these extra overheads are
nevertheless included in our experimental results. Second, indirect
array accesses (which are common in irregular applications) might
cause may dependences as well. For example, statement-A writes
to array X [i] and statement-B reads array X [Y [i]]. In this situa-
tion, statement-B may depend on statement-A due to the value of
Y [i], whose value cannot be determined at compile time. To target
this type of may dependences, we apply inspector-executor para-
digm [15]. Speci�cally, in most loop-dominated applications, there
is an outer (timing) loop that iterates either a �xed number of times
or until a convergence criterion is met. In our implementation, the
compiler inserts an inspector-code for the beginning iterations of
the timing loop. The inspector is invoked at runtime to gather the
may dependence information which are being used later in the
executor phase (i.e., the remaining iterations of the timing loop).
Our subcomputation scheduling scheme is only invoked in the ex-
ecutor stage and uses the may dependence information collected
by inspector to make decisions on subcomputation scheduling. It
is to be mentioned however that, this problem brought by may de-
pendences is not unique to our proposed scheme. More speci�cally,
even a scheme that maps computations at an iteration granularity
(i.e., does not break up an interation) would also need a mechanism
to ensure correct execution in the existence of may dependences.
Code generation: In the default computation assignment, a loop
is distributed over available nodes in the target manycore at an
“iteration granularity”. That is, each node is assigned one (or several)
“entire loop” iteration(s). As explained above, our approach splits
the statements and performs scheduling at a “subcomputation”
granularity. Figure 8 shows the high-level code generated by our
approach. Let us assume a loop body with two statements per
iteration, as shown in Figure 8a. Suppose that iteration i is assigned
to node i in the default execution (also shown in Figure 8a). After
our optimization (window size is 2 statements), the statements (S1
and S2) are broken into subcomputations and scheduled on di�erent
nodes (i.e., node i1 and node i2), as illustrated in Figure 8b. Note that
the subcomputations in node i1 and node i2 can potentially execute
in parallel, as we have previously discussed. Synchronizations are

6The conditional itself may contain computations. Since it is being duplicated and
copied to di�erent nodes, each copy needs to fetch the data and perform the computa-
tion to evaluate the conditional.

inserted in the code segment scheduled to be executed in node i , to
ensure the correctness of execution. It is important to emphasize
that node i1 and node i2 also have their own assigned iterations
and those iterations are optimized individually in the same way
as those of node i , while ensuring load-balance. (i.e., some of the
iterations originally assigned to nodes i1 and i2 will also be broken
into subcomputations that will be mapped to other nodes).

5 EXAMPLES
Single statement: Let us �rst consider a simple case, shown in
Figure 9: one statement with equal operator priorities and no paren-
theses. Let us assume that,A(i), B(i),C(i), D(i), and E(i) are located
in nodesnA(i),nB(i),nC(i),nD(i), andnE(i), respectively (as depicted
in Figure 9a). In the default execution (shown in Figure 9b), B(i),
E(i), D(i), and C(i) are fetched into nA(i) and the computation is
performed in nA(i). The �nal result is also stored in the L1 cache
of nA(i). According to our de�nition of data movement, the total
number of data movements is 13. Our approach �rst generates an
MST for this statement. We �rst pick up edge 1 in Figure 9c since
it has the smallest edge weight. We next pick up edge 2 . Note that,
if we have multiple edges with the same weight, we randomly pick
one of them. We then select edge 3 . Finally, we connect nA(i) and
nD(i) using edge 4 . The resulting MST is given in Figure 9c. Fig-
ure 9d shows how subcomputations are scheduled with respect to
MST. We start with the leaf nodes and assign the subcomputations
to their parent nodes. Suppose that we choose nE(i) (randomly se-
lected from nC(i) and nE(i)). We then move to nB(i) and decide to
perform the subcomputation B(i) + E(i) in nB(i). Next, we move
to nA(i) and, since nA(i) is a parent node, it has to wait until all of
the results expected from its child nodes are computed. Therefore,
we pick the remaining leaf node (nC(i)) and perform C(i) + D(i) in
nD(i). Finally, the last computation is performed, and the output
data is stored in nA(i). Compared to default execution which in-
volves 13 data movements, our optimization reduces the total data
movements to 8.
Single statement with parentheses: In our second example, as
shown in Figure 10, we discuss the case of single statement con-
sisting of priorities and/or parentheses. We assume that A(i), B(i),
C(i), D(i) and E(i) are located in the nodes shown in Figure 10a,
and the default (unoptimized) execution fetches all data to nA(i)
(Figure 10b). Since C(i) + D(i) + E(i) needs to be computed before
being multiplied by B(i), our approach applies the “level-based”
optimization discussed earlier. Recall from Section 4.2 that, data in
a statement are parsed into nested sets. Statement splitting happens
from the innermost set towards the outermost set, and a partial MST
graph is formed for each nested set. In this example, the generated
nested set is {A(i), B(i), {C(i), D(i), E(i)}}. We start by constructing
an MST graph on {C(i), D(i), E(i)}. Our algorithm picks edge 1

and then 2 , as shown in Figure 10c. After that, {C(i), D(i), E(i)} is
considered as a “single component” in {A(i), B(i), {C(i), D(i), E(i)}}.
Therefore, in the second step, we pick 3 , as it has the shortest edge
(distance 1) from nB(i) to “node”{C(i), D(i), E(i)}. The �nal MST is
illustrated in Figure 10c. The scheduling strategy for this case is
the same as in the previous example (Figure 10d), and as a result,
we reduce the total data movements from 13 to 9.
Multiple statements: Next, using Figure 11, we discuss a mul-
tiple statements scenario. Assuming two statements: S1 (A(i) =
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for(i=0; i<n; i++)
{
…
S1: A(i) = B(i)+C(i)+D(i)+E(i)    
…
}

B(i)

C(i)

D(i)

E(i)

A(i)

(a) Sample code and data placement.

B(i)

C(i)

D(i)

E(i)

A(i)

(b) Default execution.

B(i)

C(i)

D(i)

E(i)

A(i)

(c) MST.

B(i)

C(i)

D(i)

E(i)

A(i) C(i) + D(i)
B(i) + E(i)

E(i)

C(i)

(d) Scheduling.

Figure 9: A single statement in a loop iteration.

B(i)

C(i)

D(i)

E(i)

A(i)

for(i=0; i<n; i++)
{
…
S1: A(i) = B(i)*[C(i)+D(i)+E(i)]   
…
}

(a) Sample code and data placement.

B(i)

C(i)

D(i)

E(i)

A(i)

(b) Default execution.

B(i)

C(i)

D(i)

E(i)

A(i)

(c) MST.

B(i)

C(i)

D(i)

E(i)

A(i)

C(i)

C(i) + D(i)

R+ E(i)

B(i)xR

(d) Scheduling.

Figure 10: A single statement with parentheses in a loop iteration.

for(i=0; i<n; i++)
{
…
S1: A(i) = B(i)+C(i)+D(i)+E(i)  
S2: X(i) = Y(i)+C(i)
…
}

B(i)

C(i)

D(i)

E(i)

A(i)

X(i)

Y(i)

(a) Sample code and data placement.

B(i)

C(i)

D(i)

E(i)

A(i)

X(i)

Y(i)

(b) Default execution.

B(i)

C(i)

D(i)

E(i)

A(i)

X(i)

Y(i)

(c) MST.

B(i)

C(i)

D(i)

E(i)

A(i)

X(i)

Y(i)

C(i)C(i) +D(i)

B(i) + E(i)
E(i)

Y(i)
Y(i) +C(i)

(d) Scheduling.

Figure 11: A case with multiple statements in a loop iteration.
for(i=0; i<n; i+2)
{
…
S11: A(i) = B(i)+C(i) +D(i)
S12: X(i) = Y(i)+C(i)
S21: A(i+1) = B(i+1)+C(i+1)+D(i+1)
S22: X(i+1) = Y(i+1)+C(i+1)
…
}

B(i)

X(i)

Y(i)

B(i+1)

A(i)
A(i+1)

X(i+1)

Y(i+1)
D(i)
D(i+1)

C(i)
C(i+1)

(a) Sample code with window size=1.

B(i)

X(i)

Y(i)

B(i+1)

A(i)
A(i+1)

X(i+1)

Y(i+1)
D(i)
D(i+1)

C(i)
C(i+1)

(b) Window size=2.

B(i)

X(i)

Y(i)

B(i+1)

A(i)
A(i+1)

X(i+1)

Y(i+1)
D(i)
D(i+1)

C(i)
C(i+1)

(c) Window size=3.

Figure 12: Scheduling with di�erent window sizes.
B(i) + C(i) + D(i) + E(i)), and S2 (X (i) = Y (i) + C(i)). Originally,
data are in the nodes highlighted in Figure 11a and, in the default
execution (Figure 11b), data are brought into nA(i) and nX (i) for
the computations of S1 and S2, respectively. This results in 13 data
movements for executing S1 and 9 data movements for executing S2.
If we separately apply single statement optimization to S1 and S2,
the total number of data movements of S1 is reduced to 8, whereas
the total number of data movements of S2 is 7. However, this op-
timization strategy does not take into account the fact that C(i) is
also in the L1 cache of nD(i), because subcomputationC(i)+D(i) in
S1 is scheduled to nD(i).. To capture this opportunity, we construct
the MST of S2 as shown in Figure 11c. We schedule Y (i) +C(i) in
nD(i) instead of nC(i) (Figure 11d). The bene�ts of doing so are two-
fold. First, C(i) + Y (i) in S2 can generate an L1 cache hit for C(i) in
the L1 cache of nD(i). Second, we reduce the total data movements
caused by S2 to 5. As a result, the total number of data movements
is reduced to 13 (compared to 22 in default execution, and 15 in the
single statement at-a-time optimization).

Di�erent window sizes:We now give an example illustrating the
impact of having di�erent window sizes when scheduling subcom-
putations. As shown in Figure 12, we assume that the maximum
window size is 3 statements, and the loop body is unrolled by one
iteration to have enough statements �lling the window (labels as
S11, S12, S21, and S22). Let us further assume that D(i) and D(i + 1)
are in the same data block, indicating spatial locality between D(i)
and D(i + 1). Similarly, A(i) and A(i + 1) as well asC(i) andC(i + 1)
share the same data block and are represented by using a single
square in Figure 12. Note that B(i) and B(i + 1) are not in the same
data block and are mapped to di�erent nodes. The remaining vari-
ables are in separate data blocks residing in the cache banks that
belong to the di�erent nodes. In the default execution, the total
number of data movements for S11, S12, S21, and S22 are 9, 10,
3, and 7, respectively (29 in total). Note that the S21 only needs
to fetch B(i + 1) and hits its L1 cache on accessing C(i + 1) and
D(i + 1) due to spatial locality. Figure 12a shows the scenario of
a single statement (window size is 1) optimization. In this case,
the total number of data movements for S11, S12, S21, and S22 are
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Barnes 68.3% Cholesky 97.2% FFT 92.3% FMM 74.4%
LU 90.7% Ocean 77.3% Radiosity 77.3% Radix 84.2%
Raytrace 85.1% Water 82.1% MiniMD 95.5% MiniXyce 93.8%

Table 1: The fraction of compile time-analyzable data refer-
ences.

Barnes 63.1% Cholesky 91.8% FFT 84.5% FMM 70.6%
LU 85.7% Ocean 72.7% Radiosity 69.9% Radix 89.1%
Raytrace 80.2% Water 77.6% MiniMD 87.4% MiniXyce 86.5%

Table 2: Cache hit/miss predictor accuracy.
App add/sub mul/div others (shift, App add/sub mul/div others (shift,

logical, etc.) logical, etc.)
Barnes 51.4% 26.2% 22.4% Cholesky 39.4% 47.6% 13%
FFT 33.1% 46.5% 20.4% FMM 47.2% 45.3% 7.5%
LU 41.8% 51.6% 6.6% Ocean 52.2% 41.4% 6.4%
Radiosity 46.2% 33.4% 20.4% Radix 39% 38.7% 22.3%
Raytrace 43.4% 49.7% 6.9% Water 58.1% 28.2% 13.7%
MiniMD 44.4% 37.2% 18.4% MiniXyce 46.3% 36.7% 17%

Table 3: The fraction of computation types o�loaded.
6, 7, 6, and 6, respectively (25 in total). Note that S21 has 6 data
movements becauseC(i + 1) is found in the L1 cache of nD(i) while
computing C(i + 1) + D(i + 1) in node nD(i). Therefore, there is no
need to fetch C(i + 1) from nC(i). In the second scenario, shown in
Figure 12b, two statements are considered together (i.e., a window
size of 2) in an attempt to capture data reuses in L1. Subcomputa-
tions Y (i) +C(i) and Y (i + 1) +C(i + 1) are performed in nD(i). As
a result, the total number of data movements for S11, S12, S21, and
S22 are 6, 5, 6, and 5, respectively (22 in total). Figure 12c depicts the
case where window size is 3 statements. Note that, in this case, the
last statement (S22) is separated from the window. Therefore, S22
have no information ofC(i + 1) is fetched into nD(i). Consequently,
S22 cannot take advantage of the spatial locality between C(i) and
C(i + 1). In this scenario, the data movements for S11, S12, S21, and
S22 are 6, 5, 6, and 6, respectively (23 in total). Therefore, in this
example, our approach prefers a window size of 2 statements.

6 EXPERIMENTAL EVALUATION
6.1 Setup
All the experiments reported in this section are performed on a
system that uses Intel Knight’s Landing (KNL). KNL [57] is a state-
of-the-art manycore system designed to deliver massive data-level
and thread-level parallelism using high bandwidth memory. It is
the newest incarnation of Intel Xeon Phi architecture and can be
connected to a host machine using various interconnects such as
PCIe, Ethernet, and In�niband (in our experiments though, we
used the native mode in which applications are booted from the
KNL itself without any help from the host). KNL consists of 36
“tiles” interconnected by a 2D mesh on-chip network. Each tile
contains 2 cores (a total of 72 cores), 4 vector processing units,
and a 1 MB L2 bank. It has two types of memories: a conventional
DDR4 (6 channels, 2400Mhz, can be expanded up to 384GB) and an
on-package high bandwidth MCDRAM.

The underlying 2D-mesh in KNL provides three modes of clus-
tered operation, each supporting “address a�nity” at di�erent levels.
These modes di�er primarily in how an L2 cache (last-level cache)
miss is serviced. More speci�cally, these modes di�er in relative
positions of 1) the core (tile) that generates the L2 miss; 2) the tag
directory that owns the missing address; and 3) the memory which
supplies the requested data block. In all-to-all mode, the addresses
are uniformly hashed over all memory, and a core can request data
in any memory component. This mode certainly uses more of the
on-chip network than the remaining two (explained shortly), but an

o�-chip access can travel long distances on the network. In quad-
rant mode, the 2D-mesh is assumed to be divided into 4 sections and
memory addresses are assigned such that the location of the tag
directory and the target memory are in the same section. In SNC-4
mode, the core that makes the memory request, the tag directory
and the target memory are all in the same quadrant. The quadrant
mode is the default mode (unless memory capacities in di�erent
channels are di�erent from each other, in which case the all-to-all
mode is the default) and most of the results reported in this section
are collected with the quadrant mode. However, we also report a
set of results when our approach is used in conjunction with the
other two cluster modes as well.

In addition to the cluster modes, KNL supports three memory
modes. In cache mode, MCDRAM is con�gured as a direct-mapped
cache; in �at mode, both MCDRAM and DDR4 are presented as
regular memory mapped in the same address space; and in hybrid
mode, a portion of MCDRAM is con�gured as a cache and the
remaining is con�gured as �at memory (this partitioning can be
controlled at the system boot-up time). In most of our experiments,
we use the �at mode (as it generates better results, when used
without our approach, than the other two modes). But, we later
report results with the other two memory modes as well.

Unless stated otherwise, all results are collected using this KNL
system. A few experiments that delve into more detailed statistics
use a simulation platform that models KNL.

We used 12 multithreaded applications as listed in Table 1 (taken
from Splash-2 [63] and Mantevo [23] suites), and each application
is run to completion. Table 1 gives the fraction of program data
references that can be statically analyzable. That is, this gives the
fraction of references for which we can identify the location of
data (both in caches and in memory). Note that our scheme is
implemented on top of data dependency analysis with static disam-
biguation [50] to detect potential memory aliasing. However, we
believe that, with proper modi�cations, our approach can also be
made to work with dynamic/speculative disambiguation [25] to bet-
ter detect memory aliasing and further improve performance. The
accuracy of the cache hit-miss predictor used in this work is given
in Table 2. The dataset sizes manipulated by these applications
range between 661MB and 3.3GB, and the L2 misses of the original
applications (i.e., without our optimization) change between 16.4%
and 37.2%. Table 3 gives, for each application in our experimental
suite, the fraction of the type of computations that are re-mapped
under our compiler scheme. For example, in Radiosity, 46.2% of
the re-mapped computations are additions/subtractions, and 33.4%
of them are multiplications/divisions. The remaining re-mapped
operations constitute 20.4%.

The proposed compiler support is implemented using LLVM
[38] as a source-to-source translator. Both the original version and
optimized version of each application is then compiled using the
same native Intel (node) compiler with the highest optimization
level turned on.

In this work, we compare our compiler approach to a “default”
computation placement strategy. It is to be emphasized that this
default strategy against which we compare is also highly optimized
from a data locality angle. More speci�cally, in this default strategy,
iteration space is divided into chunks and each chunk is assigned
to the most bene�cial core using “pro�le data”. This pro�le data
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Figure 13: Data movement reduction
over the original applications.
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Figure 14: Degree of parallelism
achieved through subcomputation
scheduling.
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Figure 15: Number of synchronizations
per statement due to subcomputation
scheduling.
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Figure 16: Improvement in L1 hit rate.
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Figure 17: Reduction in execution times
of our compiler-based approach and two
ideal cases.
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Figure 18: Contribution of di�erentmet-
rics to the execution time (simulation re-
sults).

captures which last-level caches or MCs a given chunk of iterations
use, indicating subsequently which node would be the ideal one
(from an LLC/MC locality viewpoint) for executing that chunk.
This default strategy actually generates better results than some
prior techniques which we also tested using KNL including [49]
and [17]. That is, we also implemented the data locality optimiza-
tion schemes proposed in [49] and [17] for our target architecture
(both these techniques target last-level caches), and the collected ex-
perimental results revealed that, our pro�le-based default strategy
generated around 8.3% and 12.6% performance improvement, on
average, over them. In a sense, our default computation placement
strategy represents the limit in “pure data locality (LLC perfor-
mance) optimization” for our target architecture (assuming that
iterations are not broken into subcomputations). Note however
that, while [49], [17], and the default strategy are very good at
optimizing data locality, none of them speci�cally targets reducing
data movement explicitly. Therefore, our results presented below
indicate the importance of minimizing on-chip data movements
through computation partitioning and location aware computation
placement and doing so in a data locality-aware fashion. All the per-
formance improvement results brought by our compiler approach
and reported in the rest of this section are on top of this optimized
default computation placement strategy.

Both the default version and our optimized version are also fully
optimized using the Intel node compiler with the highest optimiza-
tion level, which basically implements all loop-level optimizations
(e.g., unrolling) as well as all �ne-grain parallelism optimizations
such as SIMDization.

We want to re-iterate that, unless otherwise stated, the results
presented below are collected assuming the quadrant cluster mode
and �at memory mode. When using the �at mode, we need to
decide which data structures are placed into MCDRAM. To do that,
we used Intel Vtune (as advised in [27]) to determine candidate
data structures for MCDRAM. This approach involves three steps,
whose details are omitted due to lack of space: 1) pro�ling di�erent
data structures; 2) pro�ling data analysis; and 3) code modi�cation.
The �rst two steps identify the candidate data structures to place
into MCDRAM, whereas the last step inserts pragmas in the code
to enforce this placement.

6.2 Results
We start by presenting, in Figure 13, the reduction in data move-
ment as a result of our optimization (over the default computation
placement de�ned above). The �rst and second bars in Figure 13
represent the average (per statement) and maximum reductions
(observed across all statements in the code) in data movement, com-
pared to the default version. The geometric mean of the average
movement reduction on the on-chip network is about 35.3%. We
also observe that, in some applications such as Barnes, Ocean and
MiniMD, this reduction is quite high, whereas in some others (e.g.,
Cholesky and LU) the bene�ts are not as signi�cant. In this latter
group, the original network footprint (the total number of links) is
small, which makes our approach less e�ective.

As discussed earlier, in addition to reducing the data movements
on the on-chip network, our approach also takes advantage of par-
allelism across subcomputations. Figure 14 plots the “degree of
parallelism”, that is, the average (�rst bar) and maximum (second
bar) number of subcomputations executed in parallel per program
statement. When averaged over all the application programs we
tested, the degree of parallelism per statement is around 3. Applica-
tions such as Ocean and Barnes exhibit larger values of this metric
since they have longer/more complex statements (compared to the
others), and our compiler was able to extract more subcomputations
that could be run in parallel. Recall that the parallel execution of sub-
computations can bring synchronization overheads as well, which
are plotted in Figure 15. Comparing this graphwith that in Figure 14,
we see that a higher degree of subcomputation parallelism usually
corresponds to a larger number of synchronizations (as we stated
earlier, a large fraction of synchronizations are eliminated thanks
to our transitive closure based synchronization minimization).

Figure 16 gives the improvement of our approach brings over
the L1 hit rate of the default strategy. As stated earlier, the default
computation placement strategy is already highly optimized from a
data locality angle, but it mainly targets the last-level cache (L2 in
our case) performance. Our approach complements it by improving
the L1 performance as well (in addition to taking advantage of NDP)
when optimizing multiple statements within the same loop body.
The results in Figure 16 indicate that our approach improves the L1
performance by 11.6% on average.
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The cumulative impact of the changes in all these four metrics
(magnitude of data movement, degree of parallelism, number of
synchronizations, and L1 performance) is plotted in Figure 17 (�rst
bar for each application) as the percentage reduction in execution
time brought by our approach over the default case. When aver-
aged over all 12 applications, our approach achieves an execution
time improvement of 18.4%. In other words, careful placement of
subcomputations on the 2D-mesh can lead to signi�cant perfor-
mance improvements, even over a locality-optimized computation
placement.

To gain more detailed insight into the behavior and impact of our
proposed approach, we also used a simulator (built upon GEM5[7])
that can give speci�c architecture-level statistics which cannot be
easily collected from the real hardware. Speci�cally, we simulated
a con�guration that mimics KNL in detail and collected statistics
to isolate the impact of the four metrics our approach a�ects: data
movement, degree of parallelism, number of synchronizations, and
L1 hit rate. We tested the following four schemes:

• S1: This version runs the original (default) code except that it
has exactly the same L1 hit/miss pro�le as our optimized one7. This
is achieved by enforcing, in simulation, the L1 hit/miss pattern of
the optimized code on the default code8. In experimenting with this
version, our goal is to answer the question of what would happened
if we could somehow improve the L1 behavior but not a�ect the
other three metrics.

• S2: This version also runs the default version but this time only
the data movement costs are changed – they are exactly the same
as those incurred in our optimized version.

• S3: In this case, we run the default version, the only change
is that the degree of parallelism is the same as our optimized code,
that is, exactly the same set of computations are executed in parallel.
No other metric is a�ected.

• S4: In this last version, the default version is run with additional
costs of the synchronizations incurred in the optimized version.

Figure 18 gives the execution time impact of these versions, nor-
malized with respect to the default execution (higher the better).
One can see that, the biggest improvements come from data move-
ment reduction followed by the subcomputation parallelism. In fact,
the geometric mean of the execution time improvement brought
by the reduction in data movement alone is about 15.2%. We want
to mention that our complete approach, when tested using the
simulator, brought 19.7% performance improvement, meaning that
data movement reduction alone is responsible for 77% of the total
execution time improvement.

To illustrate that our approach does not lead to any network
bottleneck, we present in Figure 19 the reduction in average and
maximum on-chip network latencies brought by our optimized
scheme over the default execution. This data is collected using our
simulator. It can be observed that, our approach signi�cantly re-
duces both the average network latency and the maximum network
latency (which can be considered as a measure of congestion) for
all applications tested. As a result, it does not lead to any additional
congestion on the on-chip network.

7If a reference in our optimized version hits (resp. misses) in L1, in the default version
it also hits (resp. misses).
8We �rst ran the optimized code and recorded its L1 hit/miss pattern. This pattern is
then enforced on the execution of the default version.

6.3 Impact of Window Size
To determine the optimal window size to use in each loop nest,
our approach considers all window sizes between 1 statement and
8 statements, and chooses the one that gives the minimum data
movement. In Figure 20, we quantify the importance of this loop
nest based strategy by comparing it against a “�xed window size”
for all nests in the application. The �rst eight bars in Figure 20
gives the execution time improvements when using a �xed window
size (varied from 1 statement to 8 statements) for all nests of an
application. The last bar on the other hand is the result of our
approach which customizes the window size to each loop nest in an
application. Three important observations can be made from these
results. First, in general, as expected, increasing the window size
initially seems to be helping for each application. This is due to the
fact that a larger window can better capture L1 locality, as discussed
earlier. However, beyond a window size, the savings start to get
reduced, primarily because L1 cache pollution/contention (i.e. the
requested data block is no longer in the L1 cache when we execute
the subcomputation on that node). To show this is indeed the case,
we give in Figure 21 the variation in L1 hit rates as the window
size is changed. Basically, comparing this graph with the one in
Figure 20 clearly indicates that the execution time results follow the
L1 hit rate trend. Second, the ideal (�xed) window size can change
from application to application, and as such, it is di�cult to adopt
a globally acceptable value for it. Third, our compiler approach
(last bar for each application) generates, for each application, a
better result than the one that could be obtained when using the
best-performing “�xed” window size. This means that, adapting
the window size to the loop nest being optimized (that is, using
di�erent window sizes for di�erent loop nests instead of �xing it
for all loop nests) can be critical.

We want to emphasize that, the experiments above with a �xed
window size (the �rst 8 bars for each application in Figure 20)
take into account the impact of L1 reuse (like in our approach) as
well. We also performed a set of experiments where, when we use
a �xed window size, no potential L1 reuse is taken into account.
This “reuse-agnostic” �xed window size approach generated, on
average, 11% worse results than the “reuse-aware” �xed window
size approach, whose results are plotted in Figure 20.

6.4 Comparison to Ideal Scenarios
In this section, we consider two di�erent ideal scenarios: ideal
network and ideal data analysis. Tomimic the ideal network scenario.
In the ideal network scenario, all messages in the network are
assumed to take 0 cycle to complete. To mimic this ideal network
(2Dmesh) scenario, we collected network latency values (using code
instrumentation) and deducted them from the overall execution
times. The second bar for each application in Figure 17 gives the
reduction in execution times with this ideal network scenario. As
far as the geometric means are concerned, our approach (�rst bar
for each application) and the ideal network scenario result in 18.4%
and 24.4% improvements. We also note that our approach comes
close to ideal case in applications such as Radix and Radiosity.

In the second experiment, we �rst pro�led the application code
and determined the precise data access pattern and location (which
also implies 100% hit/miss prediction accuracy for cache). Then, in
the second run, we used this pro�le data (in our optimized version)
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Figure 19: Reduction in on-chip net-
work latencies (simulation results).
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Figure 20: Results with di�erent state-
ment window sizes. 1-8 correspond to
�xed window sizes for entire applica-
tion.
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Figure 21: Improvements on L1 hit rates
with di�erent window sizes.
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Figure 22: Results with the di�erent KNL con�gurations (A: ALL-TO-ALL; B:
QUADRANT; C: SNC-4; X: FLAT; Y: CACHE; Z: HYBRID; 1: original code; 2: op-
timized code). Note that (B,X,1) corresponds to the default KNL con�guration run-
ning the original applications, and (B,X,2) corresponds to the same KNL con�gu-
ration running the optimized codes.
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Figure 23: Comparison against a pro�le-
based data mapping scheme.

to perform ideal data allocation and subcomputation assignment
for each and every program statement. The third bar for each ap-
plication in Figure 17 gives the reduction in execution time with
this ideal data analysis (which is not implementable in a compiler
in practice). These results in a sense also indicate how much oppor-
tunity we miss due to imprecise data dependence and data access
pattern analysis of the compiler. The geometric mean of improve-
ment in this case is about 22.3%. It is interesting that, in some
applications, the ideal network generates better results than ideal
data analysis, whereas in some others, it is the other way around.
This is because, in the �rst group of applications, the compiler was
able to �gure out the best static placement for most of the program
statements (see Table 1), and as a result, there is not much scope
left for ideal data placement.

6.5 Results with Optimized Data Mapping
So far, we did not consider the option of changing the data-to-MC
mapping. The second bar in Figure 23 gives the execution time
improvement when using the default computation mapping but
changing the data-to-MC mapping. Speci�cally, for each memory
page, we recorded the number of accesses from each core and placed
it into a bank that is controlled by the MC which is preferred by
most of the cores (accessing that page). Note that this is a pro�le-
based strategy and may not be implemented at compile time. The
third bar on the other hand is the result from a combined scheme
which �rst applies our computation mapping strategy and then
uses the pro�le-based data-to-MC mapping explained above. We
see that geometric means of improvement for our approach, pro�le
based data mapping, and combined scheme are 18.4%, 7.9% and
21.4%, respectively. The data mapping scheme does not perform as
good as our computation mapping, mainly because for the pages
that are mostly accessed by the cores in the middle of the 2D grid,
there is no clearly preferable MC, and data accesses from such cores
cover long distances. On the other hand, our scheme can bene�t
from data mapping (as illustrated by the third bar in Figure 23) if

the latter is selectively used to �nd better places for pages whose
accesses cannot be fully optimized by our approach.

6.6 Energy Results
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Figure 24: Reduction in energy compared to default compu-
tation placement (simulation results).

We now quantify the energy bene�ts of our proposed approach
using our simulation infrastructure. Low level timing and energy
parameters for all on-chip components (cores, network, caches,
memory controllers) are faithfully modeled using CACTI [62] and
McPAT [39]. The �rst bar for each application in Figure 24 plots
the energy savings brought by our approach over the default case.
We see that our approach leads an average of 23.1% energy savings
over the default case. For comparison purposes, we also report, as
the last two bars for each application, in the same �gure, the en-
ergy savings obtained when using the two ideal schemes explained
earlier. Overall, considering both Figure 17 and Figure 24 together
clearly shows that our compiler-based approach is bene�cial from
both the performance and energy perspectives.

6.7 Results with the Other Con�gurations
As mentioned earlier, the results reported so far are collected us-
ing the quadrant cluster mode and �at memory model. In this
subsection, we evaluate our approach under other possible con-
�gurations. While potentially the hybrid memory mode in KNL
can generate better results than the �at and cache modes, it is not
trivial to determine what should be the right partitioning of the
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available MCDRAM capacity between cache and memory. In our
experiments, we used a 50%-50% partitioning Figure 22 presents
results with di�erent (cluster mode, memory mode) con�gurations
and with/without our approach. All the results presented are nor-
malized against the default computation partitioning using the �at
memory mode and quadrant cluster mode (note that the percent-
age execution time improvements reported so far in the paper are
the improvements brought by (B,X,2) over (B,X,1)). One can make
several observations from these results. First, our compiler-based
approach improves the performance of the default execution for all
application programs, for all (cluster mode, memory mode) com-
binations tested. Second, the di�erences between various cluster
modes diminish when our approach is used. In particular, even the
all-to-all cluster mode performs quite well when used along with
our computation partitioning approach. Third, the options with
the �at memory mode perform better than those with the cache
memory mode. This means that, as long as one carefully chooses
the data structures to place into MCDRAM, the �at memory option
gives better results than the cache option. Furthermore, compared
to the original versions, our approach achieves better savings with
the �at memory mode. This is because the �at memory mode tends
to increase the communication volume on the 2D mesh, and this in
turn increases the opportunities for our approach. Fourth, the best-
performing con�guration is, as can be expected, (C,X,2), i.e., our
optimized version running on �at memory mode and SNC-4 cluster
mode, with a geometric mean of execution time improvement of
25% over the default execution. Finally, even (A,X,2) con�guration
outperforms (C,X,1), indicating that careful computation partition-
ing and placement, even when used with the all-to-all cluster mode,
outperforms the SNC-4 cluster mode with the original applications
(the corresponding geometric means are 8.5% and 6.7%).

7 RELATEDWORK
Near-data processing related e�orts: Prior works explored var-
ious concepts related to NDP [2, 6, 24]. Lipovski and Yu[43] pre-
sented an architecture where single-bit ALUs are attached to DRAM
chips. Ahn et al. [2] proposed a processing-in-memory (PIM) ar-
chitecture where PIM instructions execute in a data-locality aware
fashion. Hsieh et al. [24] explored programmer-transparent schemes
to o�oad select code segments to PIMs. Xu et al. [64] ported dif-
ferent deep learning algorithms to PIM architectures. Jayasena
et al. [26] evaluated the energy e�ciency of a GPU-based PIM
architecture. Eckert et al. [19] have discussed the thermal feasi-
bility of die-stacked PIMs. Azarkhish et al. [5] have designed a
high bandwidth interconnect for Hybrid Memory Cube. The re-
maining related works along similar directions include [21, 34].
Our approach is complementary to most of these prior e�orts, as
we use compiler’s help in exploiting the NDP opportunities. Also,
our approach can be integrated with prior schemes that employ
programmer annotations to further increase performance bene�ts.
Compiler related e�orts: Kodukula et al. [37] proposed compu-
tation scheduling based on data �ow instead of control �ow. Ding
et al. [18] proposed a compiler-based o�-chip data access localiza-
tion strategy. Chu et al. [13] presented a pro�le-guided scheme
for distributing memory accesses across data caches in manycores.
Their proposal reduces memory stalls and improves computation
parallelism. Liu et al. [45] developed a compiler framework which

separates data access and computation to optimize the network
latencies experienced by o�-chip data accesses. Bondhugula et
al. [8] presented a source-to-source translator that optimizes both
parallelism and locality for programs. Das et al. [14] proposed an
application-to-core mapping strategy with the goal of reducing the
interference in the on-chip network as well as memory controllers.
Compared to these prior e�orts, ours is the �rst one that imple-
ments subcomputation-level scheduling and considers both NDP
and data reuse together. More speci�cally, the main di�erence be-
tween our work and prior compiler based e�orts is that our work is
�ner grain and it takes into account locations of cores, caches, and
memory controllers. In addition, our approach breaks computations
into subcomputations to further reduce distance-to-data. Also, our
approach is complementary to prior compiler-based CC-NUMA
works [16, 31, 41, 42, 47, 59]. This is because, compiler-based works
that target CC-NUMA systems try to collocate related computation
and data in the same node in an attempt to maximize the number of
local accesses and minimize the number of remote accesses. But, the
smallest granularity they use inmapping is a single loop iteration. In
contrast, our work considers �ner-grain mapping of computations
to cores. In a large shared-memory system, CC-NUMA techniques
can be used across nodes, and our technique can be used inside
each node (manycore).
OS/hardware/runtime related e�orts: Dashti et al. [16] pro-
posed a memory placement algorithm that reduces the on-chip
network tra�c congestion in NUMA systems. Liu et al. [46] pre-
sented an approach that integrates the OS memory management
kernels with a mechanism which enables the memory controllers
to schedule memory requests in a clustered manner. Augonnet et
al. [4] developed a runtime system that generates and schedules
parallel tasks for heterogeneous systems. Aji et al. [3] developed an
OpenCL runtime which can map command queues to devices. Their
scheduler includes a static pro�ler and a dynamic pro�ler. Other
e�orts include [1, 29, 30, 32, 44, 60]. These approaches are orthogo-
nal to ours, and they require either new hardware or modi�cations
to the runtime system.

8 CONCLUSIONS
In this work, we proposed a compiler-directed approach for near
data computing (NDP) focusing on data-intensive application pro-
grams executing on manycore systems. Our approach partitions
a set of computations into subcomputations and schedules the re-
sulting subcomputations on cores with the goal of minimizing the
distance between computation and data, and at the same time, takes
advantage of L1 locality. Our experiments indicate that the proposed
compiler-based approach signi�cantly reduces distance-to-data and
leads to an average performance improvement of 18.4%.
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