
Quantifying and Optimizing Data Access
Parallelism on Manycores

Jihyun Ryoo
Penn State University

jihyun@cse.psu.edu

Orhan Kislal
Penn State University

kislal.orhan@gmail.com

Xulong Tang
Penn State University

xzt102@cse.psu.edu

Mahmut T. Kandemir
Penn State University

kandemir@cse.psu.edu

Abstract—Data access parallelism (DAP) indicates how well
available hardware resources are utilized by data accesses. This
paper investigates four complementary components of data access
parallelism in detail: cache-level parallelism (CLP), bank-level
parallelism (BLP), network-level parallelism (NLP), and memory
controller-level parallelism (MLP). Specifically, we first quantify
these four components for a set of 20 multi-threaded benchmark
programs, and show that, when executed on a state-of-the-art
manycore platform, their original values are quite low compared
to the maximum possible values they could take. We next perform
a limit study, which indicates that significant performance im-
provements are possible if the values of these four components of
DAP could be maximized. Building upon our observations from
this limit study, we then present two practical computation and
network access scheduling schemes. Both these schemes make use
of profile data, but, while the compiler-based strategy uses fixed
priorities of CLP, BLP, NLP, and MLP, the machine learning-
based one employs a predictive machine learning model. Our ex-
periments indicate 30.8% and 36.9% performance improvements
with the compiler-based and learning-based schemes, respectively.
Our results also show that the proposed schemes consistently
achieve significant improvements under different values of the
major experimental parameters.

I. INTRODUCTION

In today’s manycores with large number of cores, network-

on-chip (NoC), multiple memory controllers (MCs) and a large

number of memory banks, maximizing data access parallelism

(i.e., how well hardware resources are used by data accesses)

can be as important as maximizing computation parallelism

(i.e., how well computations are parallelized). One option

along this direction is to simply define data access parallelism

as “memory parallelism”, the number of concurrent memory

operations, and try to maximize that. For example, an early

compiler work [52] on memory parallelism tuned iteration

space tiling to cluster memory accesses. Works along similar

directions include [56], [5], [15], [62], [59], [20], [36], [35].

While such efforts can be successful in certain applications

and single-core architectures, given a large variety of emerging

manycore systems, an approach that exposes architectural

details to software can be a more promising option. In fact,

instead of working with a high-level concept such as memory

parallelism, one may want to dig further and identify its

different “components” to better understand its behavior and

reshape it for performance benefits, which is the underlying

vision of this work.

In an NoC-based manycore with multiple MCs and memory

banks, data access parallelism (DAP) can be divided into four

components: cache-level parallelism (CLP), bank-level paral-
lelism (BLP), network-level parallelism (NLP), and memory
controller-level parallelism (MLP). CLP refers to the number

of L2 banks1 that are being accessed at a time when an L2

bank is being accessed. Similarly, BLP captures the number of

memory banks being accessed when a bank is being accessed.

Clearly, higher values for CLP and BLP indicate higher levels

of cache-level and bank-level parallelism, respectively. NLP

on the other hand indicates the number of NoC links being

exercised when at least one of the NoC links is active. A

higher NLP value means that the workload utilizes a larger

fraction of NoC. Finally, MLP captures the number of MCs

that are being used when one memory controller is active.

Similar to the CLP and BLP cases, one would prefer high

MLP and NLP values from a resource utilization perspective.

Note that CLP, BLP, NLP and MLP capture different aspects
of DAP, and optimizing for only one of them does not neces-

sarily lead to good results for the other three. For example, an

execution can utilize a large number of LLCs (high CLP), but

if all cache misses go to a small set of memory banks, its BLP

would be quite low. While there exist prior studies that focus

on each of these four components of DAP in isolation (most

of the existing studies are hardware based [11], [16], [41],

[50], [54], [55], [30], [63], with only a few software-based

studies [19], [43]), one can potentially achieve the maximum

performance by simultaneously exercising all of them. With

this motivation, this paper makes the following contributions:

• It quantifies CLP, BLP, NLP and MLP for a set of 20

multi-threaded applications, and shows that their original

values are quite low compared to the maximum possible

values. In other words, these multi-threaded applications

do not take advantage of DAP in their original forms.

• It performs a “limit study”, where it measures the poten-

tial of maximizing CLP, BLP, NLP and MLP in isolation

as well as optimizing them together. The results indicate

that, when an entire application is considered, CLP and

BLP play a bigger role, compared to NLP and MLP, in

shaping the overall performance, and optimizing all four

components can bring 40.9% performance improvement

on average. However, the results also show that, for

1We assume an S-NUCA [32] based management of shared L2 as our
last-level cache (LLC).

individual loop nests in an application, CLP, BLP, NLP

or MLP may be the dominant component.

• It presents two practical computation and network access

scheduling schemes that target CLP, BLP, NLP and MLP.

Both these schemes make use of ”profile data”, but,

while our compiler strategy uses fixed priorities of CLP,

BLP, NLP and MLP, our machine learning (ML) based

approach employs a predictive learning model.

• It presents results using these two schemes. The results

indicate that the fixed priority based scheme improves,

under the default values of our system parameters, CLP,

BLP, NLP and MLP by 45.5%, 54.6%, 20.0% and 37.9%,

respectively, on an average. These improvements in DAP

collectively contribute to a 30.8% performance improve-

ment, when averaged over all 20 programs. Further, the

machine learning based scheme improves CLP, BLP,

NLP, MLP and execution time by 55.4%, 75.3%, 36.3%,

50.9% and 36.9%, respectively.

The remainder of this paper is structured as follows. Sec-

tion II introduces the target manycore architecture our study

focuses on. Section III explains the computation parallelization

strategy assumed by our work. The different components of

data access parallelism are elaborated in Section IV. Sections

V and VI present the evaluation platform/workloads and

experimental results with the original applications. Section VII

discusses our results from an ideal (but not implementable)

data access parallelism strategy, and Section VIII presents and

evaluates two practical data access parallelism optimization

schemes: one is purely compiler based and one that employs

machine learning. The related work is discussed in Section

IX, and finally, the paper is concluded in Section X with a

summary of our major findings and a brief discussion of the

planned future work.

II. TARGET MANYCORE ARCHITECTURE

Figure 1 shows the layout for an 8×8 network-on-chip

(NoC) based manycore with static non-uniform cache archi-

tecture (S-NUCA). Each square represents a node that houses

a core, a private L1 cache, a unified L2 bank (our last-level

cache, LLC), and a router. All L2 banks in the system are

”shared” and collectively constitute our LLC. The rectangles

(marked with MC) are used to show memory controllers

(MCs). These MCs control/schedule the off-chip memory ac-

cesses (LLC misses). The arrows represent how the routers are

connected to each other and to the MCs. Even though various

dynamic message routing solutions exist in the literature, in

this work, we focus on an NoC with static routing (more

specifically, XY-routing, in which the message is routed first

in X or horizontal direction to the correct column, and then

in Y or vertical direction to the receiver node/core), since dy-

namic routing introduces significant performance and energy

overheads during execution.2 Each MC manages a DRAM

module, also referred to as DIMM, by issuing commands over

2Note that, our NLP optimization changes the underlying routing policy for
data accesses. However, it is still a static routing and uses exactly the same
number of network links as the XY-routing.

MC MC

MC MC

Core
L1

L2 Bank

Router

L1

L2

Fig. 1: Representation of an 8×8 NoC based manycore with

S-NUCA and a sample memory access flow.

address/data buses (referred to as channel). Each DIMM is

made up of multiple ranks; each rank consists of multiple

banks; and, all the banks in a rank share the same timing

circuitry. Each bank has a row-buffer, where the memory row

is loaded before the data corresponding to the request is sent

back over the channel.

As explained by Kim et al. [32], S-NUCA employs static

mapping for data. Typically, certain bits of the physical ad-

dress are used for assigning data to L2 banks and memory

banks. There are multiple benefits this cache organization

provides. Not enforcing uniformity means that the effective

cache capacity will be significantly larger than a uniform cache

structure. Since the cache banks are connected to each other,

a miss on a local L1 might be mitigated by reading the data

from another bank (remote L2), instead of requesting it from

the memory controller. S-NUCA reduces the strain on the

memory controllers and allows multiple data requests to work

in parallel via the on-chip network. We provide the following

example to discuss different scenarios that might occur with

a typical S-NUCA system. Figure 1 shows an example of

memory access flow in our architecture. When an L1 miss

occurs, the request is forwarded to the node that accommodates

the L2 bank that holds the requested data (1). If the requested

data block is found in this home L2 bank of the data, it is

read and sent back to the L1 cache in the requesting node (5).

Otherwise, an L2 miss is said to occur, and a request is sent to

the MC that controls that channel to which the bank that holds

the requested data is connected (2). This target MC schedules

the request and, after reading it from the off-chip memory (3),

sends the data back to the L2 home bank (4), and then to

the L1 cache (5). It is important to emphasize that, there are

basically two time-consuming activities involved in a memory

access: (i) time spent on traveling the NoC (which is a function

of both the number of links between the source and destination

as well as the degree of contention on the network) and (ii)

time spent on accessing the off-chip memory bank. Clearly,

maximizing DAP can reduce and/or hide the latencies of both

these activities. Specifically, maximizing CLP and BLP allows

more caches and banks to serve a given set of requests, and

similarly, high NLP and MLP values mean that the observed

network and memory queuing latencies will be reduced.

In this architecture, ”address mapping” defines how the

2

physical address space is distributed across multiple shared

components (e.g., L2 banks, memory channels, banks) in a

system. Note that each component can have its own mapping

strategy. Depending on the mapping scheme employed, a

request (physical address) can result in an access to different

components. There are various address mapping strategies,

and the two widely-used are (i) cache line-level mapping, and

(ii) page-level mapping. In the first one, the granularity of

distribution is a cache line size, whereas in the second one, it

is page size. In most of the experiments reported in this paper,

we use a cache line-level distribution of physical addresses

across L2 banks, MCs and memory banks.

III. COMPUTATION PARALLELIZATION

The primary focus of this paper is data access parallelism
(DAP), and our proposed DAP maximization strategies (which

target all four components of DAP) can work with any compu-

tation parallelization strategy, which can be “compiler-based”

or “user-specified”. In the specific computation parallelization

strategy adopted in this work, given a loop nest, the compiler

first extracts data and control dependencies and then tiles the

loop nest.3 The specific tiling strategy used is based on [29].

Note that this strategy is quite flexible and can choose non-

rectangular tiles as well, if that strategy improves performance.

For each loop nest in each application in our experimental

suite, once the ”tile shape” is decided using the approach in

[29], we experimented with different ”tile sizes” and selected

the best tile size, i.e., the one that minimizes the overall

execution time.4

Following iteration space tiling, the loop nest is parallelized.

Note that, each “tile” represents a chunk of computations

(iterations) assigned to a core for execution. The primary

goal in this parallelization is to maximize the number of

tiles that can be executed by different cores in parallel.

Consequently, the tiles are assigned to cores such that inter-

core tile dependencies are minimized as much as possible. It

is also important to emphasize that, in general, the number

of tiles is much larger than the number of cores, and as will

be discussed later, this gives the compiler some “flexibility”

in scheduling. Figure 2 shows a loop nest, its tiled version,

and the assignment of tiles to cores. In the rest of this paper,

Tc,j indicates the jth tile assigned to core c.5 The next step

following the tile-to-core assignment is to schedule the tiles

assigned to cores. We do this in a DAP-oriented fashion, as

will be explained in the rest of this paper. A unique aspect of

3Iteration space tiling [65], is a well-known loop restructuring technique
that is typically employed to exploit data reuse at the cache level or coarse-
grain computation parallelism. In this work, we focus on the latter goal. In
tiling, a given iteration space is divided into chunks (where each chunk holds
a set of loop iterations) and the iterations of each chunk are executed as a
batch.

4We want to emphasize that this tiling strategy generates better results than
the tiling strategy supported in compilers such as [28] and [1]. We believe
this is due to the following two reasons: (i) the approach in [29] explores a
larger set of tile shapes compared to [28] and [1], and (ii) our experimentation
based tile size selection strategy generates better tile sizes than [28] and [1].

5When no confusion occurs, we will also use Tc,j to indicate the tile that
core c executes (at runtime) in step j.

for(i=0; i<n; i++){
for(j=1; j<m; j++){

A(i,j) = B(i,j)+A(i,j-1)
}

}

for(ii=0; ii<n; ii=ii+2)
for(i=ii; i<min{n,ii+2}; i++){
for(j=1; j<m; j++){

A(i,j) = B(i,j)+A(i,j-1)
}

}

Original
Loop
Nest

Tiled
Loop
Nest

Fig. 2: An example loop nest, its tiled version (using rectan-

gular tile shapes, in this case), and a pictorial representation of

the tiles. In general, multiple tiles can be assigned to a core.

Also, while in this case tiles are independent, in general one

may also have inter-tile dependences that need to be enforced

during scheduling.

MC MC

MC MC

(a)

MC MC

MC MC

(b)

Fig. 3: (a) Original case with a CLP of 1. (b) Optimized case

with a CLP of 4.

our scheduling is that the tiles assigned to a core are scheduled

by considering the scheduling of the tiles assigned to other

cores as well.

Note that, a program can exhibit high degrees of parallelism

and processor utilization; however, if it does not have high

values for different DAP components, its data request will ex-

perience significant delays on caches/MCs/network, eventually

degrading the overall performance.

IV. COMPONENTS OF DAP

Below, we discuss in detail the four components/metrics of

DAP, namely, CLP, BLP, MLP and NLP.

A. CLP

As stated earlier, physical addresses are distributed across

the available LLC banks. While one can define CLP in various

ways, the definition adopted in this work is based on cache

access concurrency. More specifically, we define CLP as the

number of LLC banks serving an L1 miss in an epoch of x
cycles (where x can be calculated based on processor’s ROB

size). Clearly, a higher CLP value means better concurrent

utilization of the LLC banks in the manycore system. While an

application-conscious distribution of addresses to LLC banks

can also improve CLP, in this work, we try to improve CLP via

computation (tile) scheduling. In other words, our strategy is

to schedule tiles in different cores such that CLP is maximized.

3

MC MC

MC MC

Bank-1
Bank-2
Bank-3
Bank-4

Bank-1
Bank-2
Bank-3
Bank-4

Bank-1
Bank-2
Bank-3
Bank-4

Bank-1
Bank-2
Bank-3
Bank-4

(a)

MC MC

MC MC

Bank-1
Bank-2
Bank-3
Bank-4

Bank-1
Bank-2
Bank-3
Bank-4

Bank-1
Bank-2
Bank-3
Bank-4

Bank-1
Bank-2
Bank-3
Bank-4

Bank-1
Bank-2
Bank-3
Bank-4

Bank-1
Bank-2
Bank-3
Bank-4

(b)

MC MC

MC MC

Bank-1
Bank-2
Bank-3
Bank-4

Bank-1
Bank-2
Bank-3
Bank-4

Bank-1
Bank-2
Bank-3
Bank-4

Bank-1
Bank-2
Bank-3
Bank-4

(c)

Fig. 4: BLP vs MLP comparison. (a) Original case with a BLP of 2 and an MLP of 2. (b) BLP-optimized case. MLP is still

2 but BLP is now 4. (c) MLP and BLP are optimized together (BLP = 4 and MLP = 4).

MC MC

MC MC

(a)

MC MC

MC MC

(b)

Fig. 5: (a) Original case with an NLP of 7. (b) Optimized case

with an NLP of 12.

Figure 3 illustrates, using an example, how CLP can be

improved. In the original case shown in (a), we have a CLP

of 1, whereas in the optimized case shown in (b), the CLP is

4. More specifically, in the original case, all four concurrent

data accesses (L1 misses) originating from the shaded nodes

access the same L2 bank, whereas in the optimized case, the

same four requests go to different L2 banks.

To achieve CLP-based scheduling, we represent each tile

Tc,j using a cache vector cvc,j = < a1, a2, · · · , am >, where

each bit ak of which indicates whether Tc,j accesses the kth

LLC bank in the system. More specifically, bit ak of cvc,j is

set to 1 if any iteration in Tc,j accesses the kth LLC bank;

otherwise, it is set to 0. Our goal then is to maximize the value

of the following expression at each and every scheduling step

j:

cv1,j ∨ cv2,j ∨ · · · ∨ cvn,j ,

where ∨ denotes bitwise OR operation and n is the total

number of cores. In the ideal case, the result of this expression

(which can be termed as the cumulative cache vector at

step j) is < 1, 1, 1, · · · , 1, 1 >, that is, it contains all 1s,

indicating that all caches (LLC banks) in the system are

accessed at scheduling step j (when accesses from all cores

are considered). While the CLP component of data access

parallelism is important, a high CLP does not guarantee high

BLP, NLP or MLP. For example, an execution with a lot of

concurrent L2 accesses to different L2 banks (high CLP) can

generate L2 misses that mostly go to a small set of memory

banks (low BLP).

B. BLP

We define bank-level parallelism (BLP) as the number of

banks serving the last-level cache misses in a small epoch

(e.g., 128 or 256 cycles). Clearly, a high BLP value means

better (more balanced) utilization of available memory banks

in the system, and can be expected to lead to higher application

performance (compared to a lower BLP value). While there

exist a number of prior works that targeted BLP, almost

uniformly such works focused on BLP in isolation (Section X

discusses them), without looking at it in a larger context, along

with other components of data access parallelism. Similar to

our definition of cache vector (cv), we define a bank vector
bvc,j which is an s-bit vector, where s being the total number

of banks in the system. The kth bit of this vector is set to 1 if

Tc,j accesses the kth bank in the system; otherwise, it is set

to zero. Consequently, from a BLP viewpoint, one may want

to maximize the following expression at each scheduling step

j:

bv1,j ∨ bv2,j ∨ · · · ∨ bvn,j .

C. MLP

Memory controller-level parallelism (MLP) is defined as

the number of MCs serving the last-level cache misses in

a small epoch. Since one can have multiple outstanding

requests to the memory at a time which can potentially use

different channels, a low MLP value may cause some of the

controllers to be overwhelmed (and can also congest the NoC

links around them), which can in turn degrade the overall

application performance. From an optimization viewpoint, we

want to maximize the value of the following expression at

each scheduling step j:

mv1,j ∨mv2,j ∨ · · · ∨mvn,j ,

where mvc,j , memory controller vector, is an r-bit vector (r
is the number of memory controllers), where kth bit is set to

one if Tc,j accesses the kth memory controller in the system;

otherwise, it is set to zero.

Note that improving one of BLP or MLP may not neces-

sarily guarantee an improvement for the other. Let us consider

the three different cases depicted in Figure 4. (a) represents

the original case with a BLP of 2 and an MLP of 2, i.e., only

two memory controllers and two banks are accessed. In (b),

4

only BLP is optimized – BLP is now 4, whereas MLP is still

2. Finally, in (c), both of the metrics are optimized – BLP is

4 and MLP is 4.

D. NLP

As our last DAP metric, network-level parallelism (NLP)

captures the number of NoC links that are simultaneously

active in a given short period of time. Clearly, a higher value

of NLP indicates a better use of NoC resources. We use nvc,j
to denote the an l-bit vector, called network vector, where the

kth bit (1 ≤ k ≤ l) is set to 1 if Tc,j accesses the kth NoC link;

otherwise, it is set to 0. As a result, the NLP maximization

can be expressed as the problem of maximizing the value of

the following expression at each scheduling step j:

nv1,j ∨ nv2,j ∨ · · · ∨ nvn,j ,

In principle, NLP can be divided into two sub-components:

NLP due to LLC hits and NLP due to LLC misses. However, in

general one may not want to balance LLC hits and misses (as

we want the latter to be as low as possible), and consequently,

this division of NLP into two sub-components may not be

very important. That is, in practice, we do not care about this

division, as long as the overall NLP value is high. Figure 5

illustrates the impact of NLP optimization. In (a), which

represents the original case, we have an NLP of 7, that is,

only 7 links are used, whereas in (b) NLP is optimized to 12.

E. Discussion

While computation (tile) scheduling can be used for improv-

ing CLP, BLP and MLP, we need a different mechanism to

improve NLP (though computation mapping has an impact on

it as well). As stated earlier, by default, going from a source

node (e.g., core/L1 cache) to a destination node (e.g., L2

bank) in our NoC is achieved using the XY-routing. However,

between the same source-destination pair in our NoC, there

can be multiple routes, even if we restrict our search space to

the ones with the ”minimum number of links” (as in the XY-

routing). More specifically, consider our 2D mesh-based NoC

where a message, say m, is to be sent from a source node,

(xs, ys), to a destination node, (xd, yd). If m = |xd − xs|
and n = |yd − ys|, one can see that this message has

Cm
m+n unique shortest paths. Thus, one can select, for each

message, a path such that the number of links used by all

messages is maximized, but none of the individual messages

uses more links than the XY-routing would use. In this work,

we adopted the strategy used in [42], which is a deadlock-free
implementation.6

Also, while data access parallelism is important, it may not

be the only factor that affects performance. Clearly, for an

application that has not been parallelized well, the role the data

access parallelism can play is limited. Further, ”data access

locality” can also be very important for some applications.

Like data access parallelism, data access locality can also be

6Note however that the goals of the two works are very different, as [42]
tries to maximize link reuse to save NoC energy, while we are interested in
maximizing the number of NoC links used.

TABLE I: System configuration.

Manycore Size, Frequency 64 (8× 8), 1 GHz
L1 Cache 16 KB; 8-way; 32 bytes/line
L2 Cache 512 KB/core; 16-way; 64 bytes/line
Coherence Protocol MOESI
Router Overhead 3 cycles
Page Size 2 KB
On-Chip Network Frequency 1 GHz
Routing Strategy XY-routing

DRAM DDR3-1333; 250 request buffer entries;
4 MCs 1 rank/channel; 16 banks/rank

Row-Buffer Size 2 KB

Address Distribution across LLCs 64 bytes
Address Distribution across banks 64 bytes
Epoch Length 256 cycles

defined in terms of its individual components. For example,

everything else being equal, one may want to reduce the

distance (in terms of NoC links) between a requesting core and

the target L2 bank, so that average NoC latency per data access

could be reduced. Where appropriate, we also report locality

numbers to show how aggressively optimizing for DAP can

affect the data access locality and overall application behavior.

Now that we have defined the four main components of

DAP, we next evaluate them quantitatively for four different

scenarios: original applications, ideal case with optimum DAP,

a pure compiler-based heuristic, and a machine learning (ML)

based approach.

V. EVALUATION PLATFORM AND WORKLOADS

To quantify DAP in multi-threaded applications as well as

the impact of optimizing it, we used a simulation-based study.

We want to emphasize that currently it is not possible to collect

detailed statistics on different components of DAP (CLP, BLP,

NLP and MLP) on an actual system, and this is why we

conducted a simulation based study. Another reason is that we

also want to measure the impact of maximizing DAP via an

ideal scheme which cannot be implemented in real hardware.

All the experiments reported in this paper are performed

using the GEM5 [7] simulation environment. GEM5 can

model the system-level architecture as well as the processor

microarchitecture. Table I gives the main architectural param-

eters (along with their default values) that define the manycore

system simulated in this work. The values of some of these

parameters are later modified to conduct a sensitivity study

(Section VIII-C). In this work, each application is simulated

for 1 billion instructions after the warm-up phase.

We used 20 multi-threaded applications extracted from three

benchmark suites (mantevo [26], specomp [4] and splash-2

[9]). The dataset sizes used in these programs range between

751MB and 3.3GB. Their execution times, when running

on the configuration given in Table I, vary from 57.2sec to

3.3min. To implement our compiler support, we used the

LLVM compiler infrastructure [40]. In this work, we use

LLVM as a source-to-source translator which takes a given

(original) application program as input, and generates its DAP-

optimized version as output. The optimized codes as well as

the original ones are then compiled using the node compiler

with the highest optimization flag (O3). The execution model

5

0

20

40

60

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

C
LP

Progress

phdMesh

0

20

40

60

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

C
LP

Progress

ocean

0

20

40

60

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

C
LP

Progress

ammp

Fig. 6: CLP results over time for three representative applica-

tions in their original forms.

0

20

40

60

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

B
LP

Progress

apsi

0
10
20
30
40
50
60

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

B
LP

Progress

barnes

0
10
20
30
40
50
60

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

B
LP

Progress

applu

Fig. 7: BLP results over time for three representative applica-

tions in their original forms.

used in this work is similar to one that frequently appears in

high-performance computing: each application is parallelized

across all available cores in the system, and we run one

(multithreaded) application at a time.

VI. EVALUATION OF DATA ACCESS PARALLELISM OF THE

ORIGINAL APPLICATIONS

Now we quantify CLP, BLP, MLP and NLP of the original

applications.When we say “original applications” we mean

no DAP-specific optimization is employed. However, each

application is compiled using all data locality and SIMD

optimizations supported by the underlying node compiler (with

the O3 option). More importantly, all versions compared

in this paper (original and optimized) use the same (tile

based) computation parallelization strategy explained earlier

in Section III, and they only differ from each other in how

they optimize for DAP. That is, the difference between the

original and optimized versions come solely from DAP.

Figure 6 plots the variations in CLP over time for three of

our applications, which we believe are ”representatives” of the

remaining applications as well. Each of these plots captures a

small segment of execution (corresponding roughly to about

1/10th of the total application simulation time), and the x-

axis indicates time (execution progress). ammp represents a

case with average CLP; phdMesh represents a case with high

CLP; and ocean represents a case with low CLP. The first

bar for each benchmark in Figure 10 gives the average CLP

value for the entire simulation period. One can see from

these results that, in general, CLP values are not very high

(considering that the maximum possible value is 64 since we

have 64 L2 banks); in fact, in 12 of our 20 applications,

the average CLP value is less than 32. These results mean

that, our applications, in their original forms, do not utilize

the available last-level caches (LLCs) well, even under the

default cache line granularity distribution of addresses across

the caches (although not presented in this paper in detail, using

a page granularity distribution of physical addresses across

the L2 banks led, on average, to 18% reduction in the CLP

values reported in Figure 10). There are three reasons for these

0
1
2
3
4

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

M
LP

Progress

phdMesh

0
1
2
3
4

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

M
LP

Progress

art

0
1
2
3
4

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

M
LP

Progress

gafort

Fig. 8: MLP results over time for three representative appli-

cations in their original forms.

0
20
40
60
80

100
120

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

N
LP

Progress

equake

0
20
40
60
80

100
120

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

N
LP

Progress

art

0
20
40
60
80

100
120

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

N
LP

Progress

swim

Fig. 9: NLP results over time for three representative applica-

tions in their original forms.

less-than-expected CLP values. First, due to temporal locality

of data accesses, only a subset of the available L2 caches

is actively used at any given execution period. Second, due

to the existence of an NoC, it takes some time for a data

access to reach its target L2 bank, during which the cache

remains idle, if there are no other request being served by

the same cache bank. Third, most of these applications have

some ”computation-intensive” periods as well, where there are

not many data accesses, which also contribute to low CLP

numbers.

Figure 7 gives the BLP variations of three representative

applications (apsi, barnes and applu) over time. As in the

case of the CLP values, these BLP values are not very

high (considering that the maximum possible BLP value is

4 × 16 = 64), and one can see from the first bar for each

application in Figure 11 that, the average BLP values across

20 applications is around 23.4. The reason for these low BLP

values may change from one application to another. In most

of the applications with low BLP, the reason is the lack of

sufficient LLC misses to fill the available banks; and in the

remaining ones, it is the locality of LLC misses, that is, the

LLC misses (just like LLC accesses) also exhibit locality and

tend to concentrate on a small number of memory banks at

a given period of time. Again, adopting a page granularity

distribution of physical addresses across the banks (as opposed

to the cache line granularity used in our default setting) led to

significant reductions in the BLP values plotted in Figure 11

(24% reduction on average).

We next consider the MLP variations for three of our

applications (phdMesh, art, and gafort) in Figure 8. Keeping

in mind that the maximum possible value for MLP in our

default architecture is 4 (Table I), these values are quite low,

giving an average of 2.1 (see the first bar for each application

in Figure 12), due to the skewing of the last-level cache misses

towards 1 or 2 of the memory controllers in a given execution

window.

Finally, the results for the three sample NLP traces presented

in Figure 9 (for applications equake, art, and swim), and the

overall NLP values shown as the first bar for each application

6

0
20
40
60

C
LP

Original CLP-ideal Compiler Based ML Based

Fig. 10: CLP results under different schemes.

0
20
40
60

B
LP

Original BLP-ideal Compiler-Based ML Based

Fig. 11: BLP results under different schemes.

in Figure 13 indicate that the execution does not utilize NoC

links well (the average NLP value being 61.3). This low

utilization has also an important consequence: the concurrent

accesses in a period of execution (whether they are cache hits

or cache misses destined for a memory controller) compete

for a small set of available on-chip communication resources

(links and router buffers), which in turn increases contention

on the NoC, further reducing the performance.

Summary: It is clear that these multi-threaded applications

do not take full advantage of the DAP offered by the un-

derlying manycore architecture. We want to emphasize that

these applications have been parallelized very well. That is,

their “computation parallelism” is quite high (and in fact only

5% of the loops in these codes could not be parallelized due

to the existence of data dependencies). It is the lack of the

sufficient data access parallelism (DAP) that prevents these

applications from reaching their maximum potential (as can

be observed from low CLP, BLP, MLP and NLP). The next

section tries to answer the question of what potential benefits

one would obtain if one could somehow maximize the different

components of DAP in isolation as well as in combination,

without hurting computation parallelism in any way.

VII. RESULTS FROM THE IDEAL DATA ACCESS

PARALLELISM

This section evaluates five different versions of each appli-

cation: CLP-ideal, BLP-ideal, MLP-ideal, NLP-ideal, and

ALL-ideal. It is important to emphasize that none of these

versions is implementable in practice (but they all can be

simulated using GEM5) and they represent in a sense what

could be achieved when a certain component of DAP could

be fully optimized, without negatively impacting any other

aspect of the execution. CLP-ideal corresponds to an execution

where the CLP is maximized to the extent allowed by data

accesses. For example, if there are, say, 50 cache accesses in

flight concurrently, CLP-ideal assumes that they are destined

to 50 different LLC banks in the system. That is, it maximizes

the number of bits in the resulting cumulative cache vector

(after each scheduling step, as discussed in Section IV-A).

CLP-ideal further assumes that, to the extent possible, each

data access goes to the nearest (available) LLC bank, in an

0
1
2
3
4

M
LP

Original MLP-ideal Compiler Based ML Based

Fig. 12: MLP results under different schemes.

0
20
40
60
80

100

N
LP

Original NLP-ideal Compiler Based ML Based

Fig. 13: NLP results under different schemes.

attempt to reduce ”distance-to-data”. BLP-ideal and MLP-

ideal make similar assumptions (as CLP-ideal) for the bank

and memory controller accesses, respectively. It is important

to note that, even under, say, CLP-ideal, one may not be able

to reach the ideal value of 64, since there may not be 64 LLC

bank accesses at all times. In other words, in a given period

of execution, CLP-ideal maximizes the number of concurrent

accesses to different LLC banks under a given number of

concurrent LLC accesses (in that period). In comparison, NLP-

ideal maximizes the number of links exercised at any given

time, under the constraint that each data access travels over the

minimum number of links to reach its destination (as in the

XY-routing). Finally, ALL-ideal combines CLP-ideal, BLP-

ideal, MLP-ideal and NLP-ideal.

0

1

2

3

4

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

M
LP

Progress

gafort

0
10
20
30
40
50
60

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

C
LP

Progress

ocean

0
20
40
60
80
100
120

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

N
LP

Progress

swim

0
10
20
30
40
50
60

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

B
LP

Progress

applu

Fig. 14: Variations in four different components of DAP in

four originally under-performing applications, when using the

ideal scheduling scenario.

Figure 14 gives the CLP, BLP, MLP and NLP behavior of

four applications that performed worst in Figures 6, 7, 8 and 9

(ocean, applu, gafort, and swim, respectively). It can be clearly

seen that these applications, whose original versions performed

very poorly, now perform very well from the perspective of

these four DAP metrics. The second bars for each application

in graphs in Figures 10, 11, 12 and 13 give the average CLP,

BLP, MLP and NLP values under CLP-ideal, BLP-ideal, MLP-

7

0
20
40
60
80

100
N

or
m

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

CLP-ideal BLP-ideal MLP-ideal NLP-ideal
ALL-ideal Compiler Based ML Based

Fig. 15: Normalized execution times with different schemes.

ideal and NLP-ideal, respectively, for all 20 applications we

have, for the entire simulation duration. Comparing these plots

with those given in the first bar for each application indicate

significant improvements due to ideal DAP. In fact, CLP-ideal,

BLP-ideal, MLP-ideal and NLP-ideal achieve, on average,

CLP, BLP, MLP and NLP values of 47.9, 43.0, 3.4 and 86.8,

respectively, indicating improvements of 66.7%, 81.1%, 57.6%

and 41.6%, in that order, over the original applications.

The first five bars in Figure 15 plot the execution times

under CLP-ideal, BLP-ideal, MLP-ideal, NLP-ideal and ALL-

ideal, normalized with respect to the original applications.

When averaged across all 20 applications we have, CLP-

ideal, BLP-ideal, MLP-ideal, NLP-ideal and ALL-ideal bring

execution time improvements of 17%, 15.5%, 4.5%, 6.3%

and 40.9%, respectively. As stated earlier, none of these five

ideal schemes is implementable, and one needs a practical

scheme if we are to take advantage of DAP. Furthermore, any

practical scheme that tries to improve CLP, BLP, MLP or NLP

is also likely to have an impact on cache behavior (e.g., cache

hit/miss statistics), on-chip network behavior, and off-chip

memory behavior (e.g., row-buffer hits/misses), which also

need to be quantified. In the rest of this paper, we propose and

experimentally evaluate two different approaches to optimize

DAP in practice. One of these approaches is pure compiler-

based, whereas the other relies on the compiler as well as a

machine learning based model.

VIII. PRACTICAL DAP OPTIMIZATION

In this section, we discuss two practical approaches for

optimizing DAP. Note that none of these approaches affects

the computation parallelism in the application code being

optimized – they only change DAP.

A. Compiler-Based Approach

Our compiler-based scheme is based upon the observation

that, considering the results captured by the first four bars in

Figure 15, our four metrics can be ordered – from the most

effective one to the least effective one – as CLP, BLP, NLP and

MLP. Therefore, our approach tries to optimize them in that

order. More specifically, the compiler first attempts to optimize

CLP, and BLP is optimized only if doing so does not hurt CLP.

Similarly, NLP is optimized only if doing so does not hurt CLP

or BLP, and finally, MLP is optimized only if doing so does not

adversely affect the other three metrics. As will be explained

below, this scheme works by exploiting the multiple options

we have (in general) for maximizing any of the metrics. For

example, when two different ways of assigning computations

(tile) to cores generate exactly the same CLP, we may prefer

the one that generates a better BLP. And similarly, if two

alternate tile scheduling generate exactly the same CLP an

BLP values, our preference is for the one that results in a

higher NLP value than the other. And, finally, if two alternate

tile scheduling have exactly the same CLP, BLP and NLP

values, our compiler picks the one with the better MLP value.

Algorithm 1 gives the high level description of our DAP-

oriented computation (tile) scheduling algorithm. As stated

earlier, the algorithm ranks its priorities as CLP, BLP, NLP and
MLP, based on the results plotted in Figure 15. Specifically,

each iteration of the outermost loop (line 1) schedules a group

of tiles on different cores with respect to our optimization

priorities. The inner loop (lines 5 to 25) iterates on each core

to find an appropriate tile for it to schedule next. Since the

priority order is fixed (i.e, CLP, BLP, NLP, and MLP), we

first select tile(s) which give the maximum CLP (max clp)

value (lines 6 - 8). Second, we choose tile(s) which give the

maximum BLP (max blp) value (lines 9 - 11). Note that,

the candidate tiles being used to look for the maximum BLP

value are the tiles which already give the maximum CLP value

in our first step (lines 6 - 8). Similarly, the candidate tiles

for searching maximum NLP (max nlp) value are the tiles

already give the maximum values for both CLP and BLP.

Finally, we select one tile which gives us maximum MLP

(max mlp) value (as this tile already satisfies maximum CLP,

BLP, and NLP). It is important to emphasize that, while NLP

is primarily determined by the route taken by the messages,

computation mapping still plays a role in shaping it. This

is because two alternate scheduling can lead to different

constraints on the on-chip network depending on the data

accesses issued by the tiles in them. In identifying the best

tile to schedule for a core c at a scheduling step j, our

compiler also considers all Cm
m+n paths (see Section IV-E)

for each potential/schedulable tile, and determines the one that

maximizes the value of (nv1,j ∨ nv2,j ∨ · · · ∨ nvn,j). These

details are omitted from Algorithm 1 for clarity.

Since our compiler approach needs to distinguish between

cache hits and misses, it also employs a cache miss prediction

8

Algorithm 1 DAP-oriented tile scheduling.

INPUT: number of cores (n); number of tiles per core (m); window size (w);
1: while there are tiles waiting to schedule do
2:

−→
clp,

−→
blp,

−→
blp,

−−→
mlp← �0

3: max clp, max blp, max nlp, max mlp← ∅

4: schedule← ∅

5: for corei from core1 to coren do
6: for tilei,j from tilei,1 to tilei,w do
7: max clp← max clp ∪ tilei,j max{−→clp∨

tilei,j → cvi,j}
8: end for
9: for tilei,j in max clp do

10: max blp← max blp ∪ tilei,j max{−→blp∨
tilei,j → bvi,j}

11: end for
12: for tilei,j in max blp do
13: max nlp← max nlp ∪ tilei,j max{−→nlp∨

tilei,j → nvi,j}
14: end for
15: for tilei,j in max nlp do
16: max mlp ← max mlp ∪ tilei,j max{−−→mlp

∨
tilei,j →

mvi,j}
17: end for
18: choose tilei,j from max mlp
19: delete tilei,j from corei
20: schedule← schedule ∪ tilei,j
21:

−→
clp← −→

clp ∪ tilei,j → cvi,j

22:
−→
blp← −→

blp ∪ tilei,j → bvi,j

23:
−→
nlp← −→

nlp ∪ tilei,j → nvi,j
24:

−−→
mlp← −−→

mlp ∪ tilei,j → mvi,j

25: end for
26: move slide window
27: end while

scheme [23] to predict where the LLC miss will happen in

each tile, and identify the memory controllers and banks that

will be accessed in each tile.

Our approach also needs some help from the operating

system (OS). Most OS support APIs that allocate a physi-

cal page for a given virtual address using a page-coloring

algorithm. There is also an API called page-createva(.) in

Solaris (and similar calls in other OS such as Linux) that can

accept hints from the applications. For the purposes of this

work, we modified this OS call to allocate physical addresses

such that the OS uses the same cache bits, rank bits and

bank bits from the virtual address for the physical address.

Consequently, cache/rank/bank bits are not modified during the

virtual-to-physical address translation, to allow the compiler

reason about DAP metrics. In our experiments, we observed

no extra page faults due to this constraint in address mapping.

1) Results: The third bar for each application in Figures 10,

11, 12 and 13 give the average CLP, BLP, MLP and NLP

values under this compiler scheme. We see that, when aver-

aged across the 20 applications we have, the compiler scheme

achieves average CLP, BLP, MLP and NLP values of 41.8,

36.1, 2.9 and 73.6, respectively. When compared to the average

values achieved by CLP-ideal (47.9), BLP-ideal (43.0), MLP-

ideal (3.4) and NLP-ideal (86.8), respectively, these DAP

improvements brought by the compiler can be considered very

good (especially, considering that the compiler is limited in its

ability to analyze the code and extract data access patterns).

To get the full picture of the impact of our compiler-based

strategy however, one needs to consider its effects on other
aspects of execution as well. In other words, improving DAP

can have other types of impacts on cache, NoC and off-chip

memory behaviors, which also need to be quantified, for a fair

evaluation. For this purpose, we evaluate the impact of our

compiler scheme on three metrics: “cache hit rate”, “NoC la-

tency”, “row-buffer hit rate”,7 to have an idea about its impact

of cache performance, NoC performance and main memory

performance, respectively. The first bar for each application

in Figure 16 gives the percentage variation in the L2 cache

rates of the original applications when using the compiler-

based scheme. We see that this variation is very small, that is,

the compiler optimization does not affect the cache hit rates

much (reducing them by only 0.54% on an average). This is

mainly because the granularity we use for scheduling is a tile,

and once a tile is scheduled (in both the original applications

and optimized ones), all its iterations are executed one after

another. Consequently, as far as a tile is concerned, one can

expect similar cache performances in both the cases. Variations

between the original codes and optimized codes occur across

the boundaries of the tiles (as the two versions schedule

tiles differently), but the impact of these tile transitions is

limited, and consequently, the cache performances of both

the schemes are quite similar. A similar observation can be

made for the row-buffer hit rates as well. The second bar for

each application in Figure 16 plots the percentage variation in

row-buffer hit rates, where the average difference between the

original applications and DAP-optimized ones is only about

1%. Finally, the last bar gives the variations in NoC latency,

when the compiler-optimized codes are used. We see that, our

compiler-based DAP optimization increases NoC latency by

about 3.1%, on average. These increases in the NoC latencies

are not very high. Overall, the impact of our compiler approach

on metrics not related to parallelism is quite limited.

Taking into account its impact on DAP (Figures 10, 11, 12,

13) and other metrics of interest (Figure 16), the sixth bar for

each application program in Figure 15 gives the “normalized

execution time” achieved by the compiler scheme (with respect

to the original execution), as a result of improving DAP. We

can see an average execution time improvement of 30.8%,

which compares quite well to the 40.9% average improvement

brought by ALL-ideal. This result clearly shows that the
compiler can be quite successful in improving DAP and
reducing execution times for these multithreaded applications.

Note that, the compiler algorithm explained above tries to

exploit CLP, BLP, NLP and MLP in that order. We also per-

formed experiments with a modified version of our compiler

algorithm which targets only one component of DAP at a time.

The results, plotted in Figure 17 indicate that, while doing so

certainly improves, as expected, the target DAP component

(for instance, BLP Only generates the best BLP value and

CLP Only generates the best CLP value), none of these single

component centric versions generates a better performance

than the version that considers all four DAP metrics in ordered.

B. Machine Learning-Based Approach

As explained earlier in Section VII, in general, CLP and

BLP dominate data access parallelism exhibited by our multi-

7Each bank in the off-chip memory has one buffer (called row-buffer),
which provides fast access to the page which is accessed last from that bank.
A high row-buffer hit rate usually translates to good performance.

9

-2
-1
0
1
2
3
4

V
ar

ia
ti

o
n

 (%
)

L2 Hit Rate Row-Buffer Hit Rate NoC Latency

Fig. 16: Percentage variations in L2 hit rates, row-buffer hit rates, and NoC latency, as a result of applying our compiler-based

approach.

0

20

40

60

80

100

CLP Only BLP Only NLP Only MLP Only CLP Only BLP Only NLP Only MLP Only
DAP Metrics Normalized Execution Time

miniMD miniFE phdMesh swim mgrid applu galgel equake
apsi gafort fma3d art ammp barnes cholesky lu
ocean radiosity radix raytrace AVERAGE

CLP results

NLP results

BLP results

MLP results

Fig. 17: The values of DAP components and normalized execution times when the compiler targets only one DAP component.

Note that, CLP Only refers to the CLP value when the compiler targets only CLP, and BLP Only refers to the BLP value when

the compiler targets only BLP (and similarly for the other two metrics). For the DAP components, the y-axis represents the

absolute value. For the execution time results, the y-axis represents the normalized time (with respect to the original execution).

threaded benchmarks. However, different loop nests in a given

application can have different preferences. Figure 18 gives

the breakdown of preferable priority order among CLP, BLP,

NLP and MLP across different loop nests in an application.

For example, in phdMesh, 56.6% of loop nests prefer the

optimization order CLP, BLP, NLP and MLP, 22.5% of them

prefer BLP, CLP, NLP and MLP, 11% of them prefer CLP,

NLP, BLP and MLP, and 7.1% of them prefer BLP, NLP,

CLP and MLP. Considering all benchmarks, there is a variety

among the preferable orders across different nests.8

Motivated by this observation, we propose a machine
learning (ML) based strategy that selects the best ordering to

optimize based on the application and hardware characteristics.

While different learning strategies can be used for this purpose,

this work employs Support Vector Machines (SVM).9 In the

training phase, we use sample loop nests, to determine the

corresponding orderings of DAP components and construct

a “predictive model”, and in the inference phase, we predict

the ordering to use for a loop nest not seen before in that

architecture.

8Note that the graph in Figure 18 gives the breakdown of the preferences
of different loop nests. It does not account for the individual improtance (e.g.,
iteration counts) of different loop nests.

9A Support Vector Machine (SVM) is a classifier that can be defined
by a separating hyperplane. More specifically, given labeled training data
(supervised learning), SVM outputs an optimal hyperplane which categorizes
new examples.

0
20
40
60
80

100

D
is

tr
ib

ut
io

n
of

 th
e

Pr
ef

er
re

d
O

rd
er

s
of

 D
A

P
C

om
po

ne
nt

s
(%

)

CLP,BLP,NLP,MLP BLP,CLP,NLP,MLP CLP,NLP,BLP,MLP
BLP,NLP,CLP,MLP Other Combinations

Fig. 18: Breakdown of preferable priority orders among CLP,

BLP, NLP and MLP across different loop nests in our appli-

cations. Note that the last component (Other Combinations)

represents the cumulative contribution of all remaining twenty

orders.

TABLE II: Features used in our machine learning-based ap-

proach. Note that the static features are the ones extracted from

the program code by the compiler (at compile-time), whereas

the dynamic features are the ones extracted by the profiler (at

run-time).

Static Static Instruction Count, Number of Program Statements, Number
Features of Data References, Branch Count, Number of Arrays Accesses

Dynamic Dynamic Instruction Count, Dynamic Data Access Count,
Features Cache Miss Statistics, Number of Concurrent Main Memory

Accesses, Average Distance (on NoC) per Data Request

1) Training: In this part, we employ an offline supervised

training module to which code (loop nest) features of interest

are presented. The static (compiler-extracted) and dynamic

(profile-extracted) code features used in this work are listed in

Table II. This module executes the input code (loop nest) in the

10

84
88
92
96

100

Pr
ed

ic
tio

n
A

cc
ur

ac
y

fo
r t

he

M
L-

B
as

ed

A
pp

ro
ac

h
(%

)

Fig. 19: Prediction accuracy of machine learning-based ap-

proach.

target architecture, targeting all 24 possible values of vector

(x1, x2, x3, x4), where each xi can be one of CLP, BLP, NLP

and MLP. For example, when testing for (BLP, CLP, NLP,

MLP), the compiler first tries to optimize for BLP, and in

cases where there are multiple optimized code candidates (tile

scheduling) with exactly the same BLP values, it favors the

one with higher CLP; and in cases where there are options

with the same CLP and BLP values, it favors the one with the

higher NLP value, and so on. At the end of the training of the

loop nest, we identify the (x1, x2, x3, x4) vector that generates

the “best performance” for that nest. Using such profile data

from representative loop nests, we build an SVM model to be

used later in the inference phase.

In our work, all the loop nests that we used as “represen-

tatives” in training are from outside the benchmarks used in

our evaluations (in the inference phase). Specifically, we used

more than 350 representative loop nests from the specfp2006

[2], specomp[4] and parsec [6] suites as well as 16 popular

linear algebra kernels. Also, whenever possible, we used all

the different datasets available to us for a given benchmark (as

many as 8 for some benchmarks) to better train our model.

2) Inference: In this phase, given a loop nest (not seen

before) and a target architecture, our approach first extracts

features listed in Table II. These features are then given to

our SVM module, which returns the vector (x1, x2, x3, x4)
that contains the preferable ordering (from left to right in xi

positions) among CLP, BLP, NLP and MLP. Following this, the

compiler applies the corresponding code transformation and

accompanying message routing policy for the loop nest and

generates code. This process is repeated for each loop nest in

the application code being optimized. Clearly, while the pure

compiler-based approach discussed earlier in Section VIII-A

uses the same order of DAP components for all the loop nests

in an application (namely, CLP, BLP, NLP, MLP), this ML-

based approach can choose different orders for different loop

nests, depending on the characteristics of those nests.

3) Results: We start by presenting the “accuracy” of our

SVM based prediction, that is, what is the fraction of loop

nests, for which our learning based approach predicted the

correct (ideal) order of DAP components? The results, plotted

in Figure 19, indicate that our approach achieves an average

prediction accuracy of 95.5%.

The fourth bar for each application in Figures 10, 11, 12 and

13 give the average CLP, BLP, MLP and NLP values under

the machine learning-based approach. It can be observed from

these results that, this approach achieves average CLP, BLP,

MLP and NLP values of 44.8, 40.9, 3.2 and 83.5, respectively.

0

20

40

60

80

Default
Configuration

NoC Size =
4x8

|MC| = 8 LLC Capacity
= 1MB/core

Epoch Size =
512 cycles

Im
pr

ov
em

en
t (

%
)

CLP BLP MLP NLP Execution Time

Fig. 20: Sensitivity results with the compiler-based scheme.

0

20

40

60

80

Default
Configuration

NoC Size =
4x8

|MC| = 8 LLC Capacity
= 1MB/core

Epoch Size =
512 cycles

Im
pr

ov
em

en
t (

%
)

CLP BLP MLP NLP Execution Time

Fig. 21: Sensitivity results with the ML-based scheme.

These are clearly better than the corresponding values obtained

when using the pure compiler approach (41.8, 36.1, 2.9 and

73.6 in that order), and are quite close to the performance

of CLP-ideal (47.9), BLP-ideal (43.0), MLP-ideal (3.4) and

NLP-ideal (86.8), respectively.

The variations we observed with this machine learning

based approach on L2 hit rate, row-buffer hit rate and average

NoC latency were similar to those observed with the compiler

based approach (Figure 16); so, we do not show them in the

interest of space. The last bar for each application program in

Figure 15 gives the “normalized execution time” achieved by

this ML-based scheme (with respect to the original execution),

as a result of improving DAP. We observe an average perfor-

mance improvement of 36.9%, which is much better than the

average improvement brought by the pure compiler approach

(30.8%), and is also very close to ALL-ideal (40.9%). That

is, instead of using the same order (of DAP components) for

all loop nests in a program, customizing the order based on

the characteristics (features) of the individual loop nests in the

program can bring significant additional benefits.

C. Sensitivity Experiments

Due to space concerns, we only give average results (ge-

ometric means) across our applications. It is important to

mention that, in each of the experiments presented below,

we change the value of only one parameter at a time; all

the other parameters maintain their default values listed in

Table I. Also, to minimize the number of plots, the results

are presented as “percentage improvements” over the default

(original) execution. The first parameter we varied is the mesh

size (number of cores). Recall that the NoC size we used

so far in our experiments is 8 × 8, which is the largest

size we could simulate in our simulator. We also performed

a set of experiments with a smaller configuration (4 × 8),

and the resulting CLP, BLP, NLP, MLP, and execution time

improvements for the compiler-based approach are presented

in Figure 20 as the second group of bars (the first group of bars

give the improvements with the default parameters, for ease of

comparison). In general, the benefits coming from the compiler

11

based scheme are higher with the larger configuration (8 × 8).

This is mainly because in a large configuration the compiler

has more room in redirecting accesses to parallel resources.

We next change the number of MCs from the original value of

4 to 8. While both the original applications and their compiler-

optimized counterparts benefit from the increased MC count,

the improvements brought by our approach over the original

increase with the increased number of MCs (see the third

group of bars in Figure 20). This is due to the fact that a

larger number of MCs does not only give the compiler scheme

a better chance to improve MLP, it also better spreads the

off-chip memory accesses (LLC misses) over the NoC space,

thereby improving NLP as well. The third parameter whose

impact we quantify is the LLC capacity. Recall that our default

configuration has a 512 KB L2 cache per core. The results,

shown as the fourth group of bars in Figure 20, indicate that

using a larger LLC capacity per core (1 MB) reduces the

savings brought by the compiler based scheme in both CLP

and BLP. The last parameter we evaluate is the epoch length

(whose default value was 256 cycles). As shown in the last

group of bars in Figure 20, the effectiveness of the compiler-

based approach is not very sensitive to the epoch size. To

summarize, these sensitivity experiments demonstrate that the

compiler-based scheme performs reasonably well under the

different values of our major simulation parameters. Figure 21

plots the results from the same set of sensitivity experiments

when our ML-based approach is used. The trends observed in

this graph are similar to those observed in Figure 20.

We also ran experiments with multiple applications execut-

ing concurrently on the same manycore system. Our exper-

iments with various 4-application workloads running under

the default values of our major simulation parameters pro-

duced an average 22% improvement in the weighted speedup

metric [21]. Further, the average improvements jumped to

27% when running 8-application workloads, indicating that

our approaches can be very effective when hosting a multi-

programmed workload of multithreaded applications.

IX. RELATED WORK

In this section, we go over the related works in five cate-

gories: application mapping, memory/bank level parallelism,

NoC optimization, cache-oriented optimization, and resource

utilization.

Application mapping: Muralidhara et al. approached the

application mapping from the angle of optimizing the perfor-

mance of caches [49]. Kim et al. proposed memory scheduling

methods to improve system throughput and fairness [33], [34].

Das et al. proposed a set of mapping policies that improve

performance via reducing the inter-application interference

[18]. To our knowledge, none of these works deals specifically

with DAP.

Memory/bank level parallelism: Lee et al. focused on

improving BLP when prefetching is used [41]. Mutlu et al.

developed a parallelism-aware batch scheduler that reduces

memory overheads [50]. Ding et al. proposed a tile scheduling

scheme that predicts the LLC misses [19]. Prior works also

include [17], [53], [60], [24], [37], [10] and [66]. While most

of these works focus on memory performance and BLP, we

consider all four components of DAP.

NoC optimizations: Hu et al. proposed a message routing

technique that minimizes the energy spent on data commu-

nication [27]. Monchiero et al. explored distributed shared

memory architectures and developed an on-chip hardware

memory management unit [47]. Lankes et al. proposed op-

timizations for skewed access patterns on data IO interfaces

[39]. Compared to our work, all these works are NoC centric.

Cache-oriented optimizations: Kowarschik et al. studied

various cache optimization techniques focusing on numerical

linear algebra [38]. Cho et al. developed a caching policy

that can adapt to the environment by dynamically controlling

data placement [13]. Chaudhuri proposed a data migration

mechanism that reduces the overhead of cache management

[11]. The main focus of these studies is LLC, whereas we

focus on LLCs, NoC, MCs, and memory banks.

Resource utilization: Finally, there are prior works that target

quantifying and/or optimizing resource utilization in various

domains [25], [8], [61], [14], [51], [12], [45], [58], [22],

[46], [3], [48], [44], [57], [64], [31]. However, most of these

works deal with exclusively either CPU/GPU core utilization,

or off-chip network utilization, or off-chip memory/storage

utilization. In contrast, we focus on emerging manycores and

consider different aspects of data access parallelism.

X. CONCLUDING REMARKS AND FUTURE WORK

This is the first comprehensive study of data access parallel

parallelism (DAP) on manycores considering its four com-

ponents (CLP, BLP, NLP and MLP). Our evaluation results

demonstrate that the original values of these four metrics are

far from optimal. On the other hand, our limit study clearly

indicates the huge potential one has if these metrics could

be improved, in terms of both data access parallelism and

execution cycles. Finally, our compiler-driven approach repre-

sents one possible strategy to harness some of this potential.

In particular, the proposed compiler strategy improves CLP,

BLP, NLP and MLP, on average, by 45.5%, 54.6%, 20.0%

and 37.9%, respectively, resulting in an average execution

time improvement of 30.8% across all the workloads tested.

We also developed a machine learning-based approach which

improves CLP, BLP, NLP and MLP, on average, by 55.4%,

75.3%, 36.3% and 50.9%, respectively, resulting in an average

execution time improvement of 36.9%.

Our future work will focus on integrating the DAP-centric

optimizations presented here with those targeting data access

locality (e.g., classical cache centric ones as well as those

reducing the number of NoC links traversed by data requests).

We will also work on quantifying the benefits of our approach

on other types of applications, e.g., pointer-intensive ones.

XI. ACKNOWLEDGEMENT

This work is supported in part by NSF grants 1526750,

1763681, 1439057, 1439021, 1629129, 1409095, 1626251,

1629915, and a grant from Intel.

12

REFERENCES

[1] GCC, the GNU Compiler Collection. https://gcc.gnu.org/.

[2] SPECfp 2006. https://www.spec.org/cpu2006/CFP2006/.

[3] AL FARUQUE, M. A., KRIST, R., AND HENKEL, J. ADAM: Run-time
agent-based distributed application mapping for on-chip communication.
In Proceedings of the 45th Annual Design Automation Conference
(2008), DAC.

[4] ASLOT, V., DOMEIKA, M., EIGENMANN, R., GAERTNER, G., JONES,
W. B., AND PARADY, B. SPEComp: A New Benchmark Suite for
Measuring Parallel Computer Performance. 2001.

[5] BARUA, R., LEE, W., AMARASINGHE, S., AND AGARAWAL, A.
Compiler support for scalable and efficient memory systems. IEEE
Transactions on Computers 50, 11 (2001).

[6] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. The PARSEC
Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architec-
tures and Compilation Techniques (2008).

[7] BINKERT, N., BECKMANN, B., BLACK, G., REINHARDT, S. K., SAIDI,
A., BASU, A., HESTNESS, J., HOWER, D. R., KRISHNA, T., SAR-
DASHTI, S., SEN, R., SEWELL, K., SHOAIB, M., VAISH, N., HILL,
M. D., AND WOOD, D. A. The Gem5 simulator. ACM SIGARCH
Computer Architecture News 39, 2 (Aug. 2011).

[8] BOYER, M. Improving Resource Utilization in Heterogeneous CPU-
GPU Systems. PhD thesis, University of Virginia, 2013.

[9] BUELL, D. A., ARNOLD, J. M., AND KLEINFELDER, W. J. Splash 2:
FPGAs in a custom computing machine, vol. 9. Wiley-IEEE Computer
Society Press, 1996.

[10] CASTRO, D., ROMANO, P., DIDONA, D., AND ZWAENEPOEL, W. An
analytical model of hardware transactional memory. In 2017 IEEE
25th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS) (2017).

[11] CHAUDHURI, M. PageNUCA: Selected policies for page-grain locality
management in large shared chip-multiprocessor caches. In IEEE 15th
International Symposium on High Performance Computer Architecture
(2009).

[12] CHEN, D., HENIS, E., KAT, R. I., SOTNIKOV, D., CAPPIELLO, C.,
FERREIRA, A. M., PERNICI, B., VITALI, M., JIANG, T., LIU, J.,
ET AL. Usage centric green performance indicators. ACM SIGMETRICS
Performance Evaluation Review 39, 3 (2011), 92–96.

[13] CHO, S., AND JIN, L. Managing distributed, shared L2 caches through
OS-level page allocation. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture (2006), MICRO 39.

[14] CHOU, C., JALEEL, A., AND QURESHI, M. BATMAN: Maximizing
bandwidth utilization of hybrid memory systems. Georgia Institute of
Technology, Tech. Rep. TR-CARET-2015-01 (2015).

[15] CHOU, Y., FAHS, B., AND ABRAHAM, S. Microarchitecture opti-
mizations for exploiting memory-level parallelism. In ACM SIGARCH
Computer Architecture News (2004), vol. 32, p. 76.

[16] CHOU, Y., SPRACKLEN, L., AND ABRAHAM, S. G. Store memory-level
parallelism optimizations for commercial applications. In Proceedings
of the 38th Annual IEEE/ACM International Symposium on Microarchi-
tecture (2005), MICRO 38.

[17] CONG, J., JIANG, W., LIU, B., AND ZOU, Y. Automatic memory
partitioning and scheduling for throughput and power optimization. ACM
Trans. Des. Autom. Electron. Syst. 16, 2 (Apr. 2011).

[18] DAS, R., AUSAVARUNGNIRUN, R., MUTLU, O., KUMAR, A., AND

AZIMI, M. Application-to-core mapping policies to reduce memory
system interference in multi-core systems. In IEEE 19th International
Symposium on High Performance Computer Architecture. HPCA (2013),
pp. 107–118.

[19] DING, W., GUTTMAN, D., AND KANDEMIR, M. Compiler support
for optimizing memory bank-level parallelism. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture
(2014), MICRO-47.

[20] DING, W., TANG, X., KANDEMIR, M., ZHANG, Y., AND KULTURSAY,
E. Optimizing Off-chip Accesses in Multicores. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (2015).

[21] EYERMAN, S., AND EECKHOUT, L. System-level performance metrics
for multiprogram workloads. IEEE Micro (2008).

[22] FERRANTE, A., MEDARDONI, S., AND BERTOZZI, D. Network inter-
face sharing techniques for area optimized NoC architectures. In Digital

System Design Architectures, Methods and Tools, 11th EUROMICRO
Conference (2008).

[23] GHOSH, S., MARTONOSI, M., AND MALIK, S. Cache miss equations:
A compiler framework for analyzing and tuning memory behavior. ACM
Trans. Program. Lang. Syst. (1999).

[24] GUO, Y., LIU, Q., XIAO, W., HUANG, P., PODHORSZKI, N., KLASKY,
S., AND HE, X. Self: A high performance and bandwidth efficient ap-
proach to exploiting die-stacked dram as part of memory. In 2017 IEEE
25th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS) (2017).

[25] GUO, Z., FOX, G., ZHOU, M., AND RUAN, Y. Improving resource
utilization in MapReduce. In Proceedings of the IEEE International
Conference on Cluster Computing (2012), CLUSTER ’12.

[26] HEROUX, M. A., DOERFLER, D. W., CROZIER, P. S., WILLENBRING,
J. M., EDWARDS, H. C., WILLIAMS, A., RAJAN, M., KEITER, E. R.,
THORNQUIST, H. K., AND NUMRICH, R. W. Improving Performance
via Mini-applications. Tech. Rep. SAND2009-5574, Sandia National
Laboratories, 2009.

[27] HU, J., AND MARCULESCU, R. Energy- and performance-aware map-
ping for regular NoC architectures. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (2005).

[28] INTEL. Intel Compilers. https://software.intel.com/en-us/intel-
compilers.

[29] IRIGOIN, F., AND TRIOLET, R. Supernode partitioning. In Proceed-
ings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (1988).

[30] KANDEMIR, M., ZHAO, H., TANG, X., AND KARAKOY, M. Memory
Row Reuse Distance and Its Role in Optimizing Application Perfor-
mance. In Proceedings of the 2015 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems (2015).

[31] KAYIRAN, O., JOG, A., PATTNAIK, A., AUSAVARUNGNIRUN, R.,
TANG, X., KANDEMIR, M. T., LOH, G. H., MUTLU, O., AND DAS,
C. R. uC-States: Fine-grained GPU Datapath Power Management. In
PACT (2016).

[32] KIM, C., BURGER, D., AND KECKLER, S. W. An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches. SIGARCH
Comput. Archit. News 30, 5 (Oct. 2002).

[33] KIM, Y., HAN, D., MUTLU, O., AND HARCHOL-BALTER, M. ATLAS:
A scalable and high-performance scheduling algorithm for multiple
memory controllers. In HPCA-16 The Sixteenth International Sympo-
sium on High-Performance Computer Architecture (2010), pp. 1–12.

[34] KIM, Y., PAPAMICHAEL, M., MUTLU, O., AND HARCHOL-BALTER,
M. Thread cluster memory scheduling: Exploiting differences in
memory access behavior. In 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (2010), pp. 65–76.

[35] KISLAL, O., KOTRA, J., TANG, X., KANDEMIR, M. T., AND JUNG,
M. Enhancing computation-to-core assignment with physical location
information. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (2018).

[36] KISLAL, O., KOTRA, J., TANG, X., TAYLAN KANDEMIR, M., AND

JUNG, M. POSTER: Location-Aware Computation Mapping for Many-
core Processors. In Proceedings of the 2017 International Conference
on Parallel Architectures and Compilation (2017).

[37] KOTRA, J. B., GUTTMAN, D., N., N. C., KANDEMIR, M. T., AND

DAS, C. R. Quantifying the potential benefits of on-chip near-data
computing in manycore processors. In 2017 IEEE 25th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS) (2017).

[38] KOWARSCHIK, M., AND WEISS, C. An Overview of Cache Optimization
Techniques and Cache-Aware Numerical Algorithms. 2003.

[39] LANKES, A., WILD, T., AND HERKERSDORF, A. Hierarchical NoCs for
optimized access to shared memory and io resources. In Digital System
Design, Architectures, Methods and Tools. 12th Euromicro Conference
(2009).

[40] LATTNER, C., AND ADVE, V. LLVM: a compilation framework for
lifelong program analysis transformation. In International Symposium
on Code Generation and Optimization. CGO. (2004).

[41] LEE, C. J., NARASIMAN, V., MUTLU, O., AND PATT, Y. N. Improving
memory bank-level parallelism in the presence of prefetching. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (2009), MICRO 42.

[42] LI, F., CHEN, G., KANDEMIR, M., AND KOLCU, I. Profile-driven
energy reduction in network-on-chips. In Proceedings of the 28th

13

ACM SIGPLAN Conference on Programming Language Design and
Implementation (2007), PLDI.

[43] LIN, J., LU, Q., DING, X., ZHANG, Z., ZHANG, X., AND SADAYAP-
PAN, P. Enabling software management for multicore caches with a
lightweight hardware support. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (2009), SC.

[44] LIU, G., AN, H., HAN, W., LI, X., SUN, T., ZHOU, W., WEI, X., AND

TANG, X. FlexBFS: A Parallelism-aware Implementation of Breadth-
first Search on GPU. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (2012).

[45] MESNIER, M. P., WACHS, M., SAMBASIVAN, R. R., ZHENG, A. X.,
AND GANGER, G. R. Modeling the relative fitness of storage. 37–48.

[46] MOHANTY, S., AND PRASANNA, V. K. Rapid system-level performance
evaluation and optimization for application mapping onto SoC architec-
tures. In ASIC/SOC Conference. 15th Annual IEEE International (2002).

[47] MONCHIERO, M., PALERMO, G., SILVANO, C., AND VILLA, O. Ex-
ploration of distributed shared memory architectures for NoC-based
multiprocessors. Journal of Systems Architecture 53, 10 (2007), 719
– 732.

[48] MUDALIGE, G. R., GILES, M. B., REGULY, I., BERTOLLI, C., AND

KELLY, P. H. J. OP2: An active library framework for solving
unstructured mesh-based applications on multi-core and many-core
architectures. In Innovative Parallel Computing (InPar) (2012), pp. 1–
12.

[49] MURALIDHARA, S. P., KANDEMIR, M., AND KISLAL, O. Reuse
distance based performance modeling and workload mapping. In
Proceedings of the 9th Conference on Computing Frontiers (2012), CF
’12.

[50] MUTLU, O., AND MOSCIBRODA, T. Parallelism-aware batch schedul-
ing: Enhancing both performance and fairness of shared DRAM systems.
In 35th International Symposium on Computer Architecture (2008),
ISCA.

[51] OZTURK, O., KANDEMIR, M., AND IRWIN, M. J. Using data compres-
sion for increasing memory system utilization. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 28, 6 (2009),
901–914.

[52] PAI, V. S., AND ADVE, S. Code transformations to improve memory
parallelism. In Proceedings of the 32nd annual ACM/IEEE international
symposium on Microarchitecture (1999), pp. 147–155.

[53] PARK, J. J. K., PARK, Y., AND MAHLKE, S. ELF: Maximizing
memory-level parallelism for GPUs with coordinated warp and fetch
scheduling. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (2015),
ACM, p. 18.

[54] PATSILARAS, G., CHOUDHARY, N. K., AND TUCK, J. Efficiently
exploiting memory level parallelism on asymmetric coupled cores in
the dark silicon era. ACM Transactions on Architecture and Code
Optimization. TACO 8, 4 (2012), 28.

[55] PATTNAIK, A., TANG, X., JOG, A., KAYIRAN, O., MISHRA, A. K.,
KANDEMIR, M. T., MUTLU, O., AND DAS, C. R. Scheduling Tech-
niques for GPU Architectures with Processing-In-Memory Capabilities.
In PACT (2016).

[56] PHADKE, S., AND NARAYANASAMY, S. MLP aware heterogeneous
memory system. In 2011 Design, Automation & Test in Europe (2011),
pp. 1–6.

[57] PUTHOOR, S., TANG, X., GROSS, J., AND BECKMANN, B. M. Over-
subscribed command queues in gpus. In Proceedings of the 11th
Workshop on General Purpose GPUs (2018).

[58] QIU, D., AND SHROFF, N. B. A new predictive flow control scheme
for efficient network utilization and QoS. 143–153.

[59] SHRIFI, A., DING, W., GUTTMAN, D., ZHAO, H., TANG, X., KAN-
DEMIR, M., AND DAS, C. DEMM: a Dynamic Energy-saving mech-
anism for Multicore Memories. In Proceedings of the 25th IEEE
International Symposium on the Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (2017).

[60] SUNG, I.-J., STRATTON, J. A., AND HWU, W.-M. W. Data layout
transformation exploiting memory-level parallelism in structured grid
manycore applications. In Proceedings of the 19th international confer-
ence on Parallel architectures and compilation techniques (2010), ACM,
pp. 513–522.

[61] TAKESHIMA, R., AND TSUMURA, T. Automatic code tuning for
improving GPU resource utilization. In 2014 Second International
Symposium on Computing and Networking (2014), pp. 419–425.

[62] TANG, X., KANDEMIR, M., YEDLAPALLI, P., AND KOTRA, J. Improv-
ing Bank-Level Parallelism for Irregular Applications. In Proceedings
of the 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO) (2016).

[63] TANG, X., KISLAL, O., KANDEMIR, M., AND KARAKOY, M. Data
movement aware computation partitioning. In Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture
(2017).

[64] TANG, X., PATTNAIK, A., JIANG, H., KAYIRAN, O., JOG, A., PAI,
S., IBRAHIM, M., KANDEMIR, M., AND DAS, C. Controlled Kernel
Launch for Dynamic Parallelism in GPUs. In Proceedings of the 23rd
International Symposium on High-Performance Computer Architecture
(2017).

[65] WOLFE, M. More iteration space tiling. In Proceedings of the
ACM/IEEE Conference on Supercomputing (1989), pp. 655–664.

[66] ZHOU, H., AND CONTE, T. M. Enhancing memory-level parallelism
via recovery-free value prediction. IEEE Transactions on Computers
(2005).

14

