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Abstract

Minimizing cache misses has been the traditional goal in
optimizing cache performance using compiler based tech-
niques. However, continuously increasing dataset sizes com-
bined with large numbers of cache banks and memory
banks connected using on-chip networks in emerging many-
cores/accelerators makes cache hitśmiss latency optimiza-
tion as important as cache miss rate minimization. In this
paper, we propose compiler support that optimizes both the
latencies of last-level cache (LLC) hits and the latencies of
LLC misses. Our approach tries to achieve this goal by im-
proving the parallelism exhibited by LLC hits and LLCmisses.
More speciically, it tries to maximize both cache-level par-
allelism (CLP) and memory-level parallelism (MLP). This
paper presents diferent incarnations of our approach, and
evaluates them using a set of 12 multithreaded applications.
Our results indicate that (i) optimizing MLP irst and CLP
later brings, on average, 11.31% performance improvement
over an approach that already minimizes the number of LLC
misses, and (ii) optimizing CLP irst and MLP later brings
9.43% performance improvement. In comparison, balancing
MLP and CLP brings 17.32% performance improvement on
average.
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1 Introduction

Compiler researchers investigated a variety of optimizations
to improve cache performance [4, 9, 19, 26, 28, 32, 41, 52, 55].
Most of these optimizations are geared towards minimiz-
ing the total number of cache misses, the rationale being
that, lower the misses, higher the application performance.
Ωhile this is certainly true and many commercial compil-
ers already employ a large suite of optimizations that target
cache miss minimizations (e.g., loop permutation, iteration
space tiling, loop fusion), the impact of these techniques is
becoming increasingly limited as (i) emerging applications
are processing enormous amounts of data, (ii) the increases
in cache capacities are lagging far behind the increases in
application data volume [33, 58], and (iii) as a result, caches
are becoming unable to maintain application working sets
even after aggressive cache miss minimization.

As a result, a complementary approach would be embrac-
ing cache misses and trying to reduce their latencies (in addi-
tion to their counts). Recent works [13, 20, 22ś25, 37, 38, 42ś
44, 50, 51, 60, 61] have shown that signiicant amount of
the overall data access latency is spent on cache miss re-
lated traic (either as network latency to reach the last-level
cache (LLC) banks/memory controllers (MCs), or as memory
access itself). In other words, cache misses contribute to a
large fraction of the overall data access latency. Therefore,
an optimization approach that targets cache miss latencies
can potentially bring signiicant reductions in application
execution times.
Meanwhile, to enable application scalability, modern

manycores are employing scalable interconnects (e.g., mesh-
based network-on-chip (NoC)), instead of conventional buses.
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However, such NoC-based manycores lead to non-uniform
latencies for both LLC hits and LLC misses. Typically, a data
access missing in its local private cache (e.g., L1) is routed to
remote LLC bank, and if it is a miss in LLC, it will be further
routed to corresponding MC for an of-chip access. In this
low, multiple simultaneous accesses to a given LLC bank
further increase the access latency, even when these accesses
hit in the LLC bank. This is because that (i) routing all the
requests to the same node can cause network contention,
and (ii) multiple requests to the same LLC/memory bank can
lead to cache contention.

Therefore, it is very important for an optimizing compiler
that aims to maximize the performance of data access in an
NoC-based manycore to minimize the latencies of both LLC
hits and LLC misses (in addition to reducing the number of
LLC misses, which is a traditional optimization goal). One
way of reducing the latencies of both LLC hits and LLC
misses is to improve their parallelism, that is, the number of
LLC banks andmemory banks that are concurrently accessed
in a given period of time should be maximized.
In this paper, we deine cache-level parallelism (CLP) as

the number of the LLC banks serving L1 misses when at
least one LLC bank is serving an LLC access. Similarly, we
deine memory-level parallelism (MLP) as the number of
memory banks serving LLC misses in parallel when at least
one request is being served by a memory bank1. Ωe then
propose a compiler framework for reducing the latencies of
both LLC hits and LLCmisses, by increasing their parallelism.
At a high level, this is achieved by maximizing MLP and
CLP in a given period of time (i.e., execution epoch). Our
contributions can be summarized as follows:

•Ωe propose an optimization strategy that optimizes MLP
for LLC misses and CLP for LLC hits together. Our approach
employs code restructuring and computation scheduling,
with the goal of reducing the latency experienced by data
accesses. More speciically, for LLC hits, we want to maxi-
mize the number of cache banks concurrently accessed; and,
similarly, for LLC misses, we want to maximize the number
of memory banks concurrently accessed within a given pe-
riod of time (in addition to the number of cache banks, as all
memory accesses visit LLC banks before memory banks).
•Ωe explain how our strategy can be used to strike a balance
betweenMLP and CLP. Speciically, by considering the total
number of accesses to each of the cache and memory banks,
our compiler automatically determines the proper łtrade-
ofž between MLP and CLP for each loop nest, that leads to
the best application performance.
•Ωe evaluate our approach using a set of 12 multithreaded
applications on both a detailed manycore simulator and a
commercial manycore system (Intel Knight’s Landing [45]).
The experimental data collected from the simulator indicate

1Ωe use the terms łmemory-level parallelismž (MLP) and łbank-level paral-

lelismž (BLP) interchangeably.

that (i) optimizing MLP irst and CLP later can bring, on av-
erage, 11.31% performance improvement over an approach
that already minimizes the number of LLC misses, and (ii)
optimizing CLP irst andMLP later can bring 9.43% improve-
ment. Finally, balancing MLP and CLP can bring 17.32%
improvement. The corresponding improvement from our
approach that balances CLP and MLP on Intel manycore is
26.15%, on average.
•Using both the simulator and the commercial manycore
architecture, we present a detailed comparison of our ap-
proach against two previously-published compiler optimiza-
tions [8, 36] as well as a hardware-based memory paral-
lelism optimization [34]. The experimental results collected
clearly show that our proposed approach performs better
than these alternative approaches. Speciically, it performs
12.87%, 8.31% and 6.21% better, respectively, compared to
[36], [8] and [34], when using the simulator. On the com-
mercial manycore system, our approach outperforms [36]
and [8] by 20.13% and 13.27%, respectively.

To our knowledge, this is the irst work that presents
a compiler scheme designed to co-optimize MLP and CLP.
Further, our approach, which primarily targets łhit and miss
latenciesž is complementary to conventional data locality
optimizations (that target minimizing the łnumber of cache
missesž) as well as techniques designed to increase compute
level parallelism (e.g., loop parallelism).

2 Manycore Architecture
MC

MC

MC

MC

Core

L1

L2 Bank

Router
L1

L2

Figure 1. Network-on-chip (NoC) based manycore architec-
ture template and the low of a representative data access.

In this paper, we target emerging Network-on-Chip (NoC)
based manycore/accelerator architectures. Figure 1 depicts a
manycore architecture template. Each node in this architec-
ture contains a core, a private L1 cache, and a shared LLC
bank. The LLC is divided in to cache banks and shared across
all cores. The LLC in our baseline architecture refers to L2
cache, though our approach can work with cache hierar-
chies of any depth. Ωe assume a static-NUCA based [21]
LLC management, where the LLC is partitioned into (cache)
banks and banks are distributed across nodes. Each cache
line is statically mapped to a particular LLC bank based on its
address. Figure 1 also illustrates a typical request/data low
involved in a data access. Speciically, an access that misses
the private L1 cache is directed to an LLC (L2) bank ( 1 ). If it
hits in the LLC bank, the requested data is sent back to the
requesting node ( 4 ). However, if it misses there, an LLC miss
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occurs, and the request is forwarded to the corresponding
MC ( 2 ). The request to a DRAM is queued in a bufer at the
MC, and is issued to the DRAM by MC.
The core in each node can simultaneously issue data ref-

erence requests and those requests are received and served
by LLC banks (for hits), or memory banks (for misses). Our
optimization focuses on cache-level parallelism (CLP) and
memory-level parallelism (MLP) in an epoch of n cycles. Typ-
ically, n can be set to a value considering the size of the ROB
(reorder bufer) in the target architecture [48]. Note that,
CLP captures the number of LLC banks serving L1 misses
when there is at least one bank serving an L1 miss. Clearly,
a higher CLP value indicates a better utilization of the LLC
in the system. Similar to the CLP case, a higher MLP means
better utilization of hardware resources memory banks. Each
memory bank has a sense-ampliier called row-bufer, which
is used to hold the memory row loaded. Subsequent accesses
to the same row experience short latency, and are referred
as row-bufer hits in an open-row policy.
In addition to a manycore simulator, we also use Intel

Knight’s Landing (KNL) [45]. KNL consists of 36 nodes (re-
ferred to as tiles in Intel terminology) connected through
mesh on-chip network. Each tile consists of two cores where
each core features two 512-bit AVX vector units (VUs). There
is a 1 MB łtile-privatež L2 cache shared by two cores within
a tile and cache coherence is maintained among L2 caches
across diferent tiles. KNL has a 16GB of multi-channel dy-
namic random access memory (MCDRAM), which is divided
into 8 channels and attached to the 8 MCDRAM MCs spread
across 4 corners of the mesh on-chip network. This MC-
DRAM, which is separate from the DDR4 memory, can be
conigured into one of three diferent modes: (i) cache mode,
where MCDRAM simply acts entirely as a conventional LLC
(L3); (ii) lat mode, where MCDRAM acts entirely as an ad-
dressable memory; and (iii) hybrid mode, where 25% (or 50%)
of the MCDRAM capacity is conigured as LLC and the rest
is conigured as an addressable memory. KNL also has three
diferent cluster modes. The base mode is referred to as the
łall-to-allž mode, where the addresses are spread over the
caches and MCs uniformly. On the other hand, in the łquad-
rantž mode, the entire mesh is divided into 4 virtual regions,
and a memory access travels within the same region. Finally,
in the łSNC-4ž mode (also known as the sub-NUMA mode),
the mesh is split into 4 non-uniform memory access (NUMA)
clusters. In this case, all accesses (both cache accesses and
memory accesses) travel within each NUMA cluster.

3 Motivation

Let us consider the data access2 pattern shown in Figure 2a
on a two-dimensional array. Ωe assume that the array is
stored in memory in a row-major fashion (as in C language).
There are two cores in the system, and each core accesses

2Ωe use the terms łdata accessž and łarray referencež interchangeably.

cache miss
cache hitcacheline

Core 0 Core 1
(a)

can be cache miss

Core 0 Core 1
(b)

Core 0 Core 1
(c)

Figure 2. An example of data access restructuring to cluster
cache misses. The ovals represents the array elements. The
shaded rectangle box represents the cache line. The arrow
denotes the reference order. (a) Default reference pattern
captured by solid arrows. (b) Reference pattern after applying
loop permutation. (c) Reference pattern after applying loop
tiling on (b).

a 4 × 8 portion of the array (for illustrative purposes). Let
us assume that this access pattern repeats itself in a (timing)
loop (that is, after the last element of the array is accessed, the
irst element is accessed again, until a convergence criterion
ś captured by the timing loop condition ś is met). The igure
also highlights the cache lines (blocks) using gray boxes,
each holding 4 array elements.
The access pattern in Figure 2a is very good from a data

locality viewpoint, as the only misses incurred are for the
accesses to the irst element of each cache line (i.e., cold
misses). The problem with this hit/miss pattern is that it does
not exploit MLP (memory-level parallelism) well. Assuming,
for example, there are 4 MCs in the system each controlling 4
banks, from a single core perspective, at a period of accessing
consecutive 4 array elements, only one memory bank is
accessed (by the access corresponding to the miss), leading
to a total of 2 bank accesses at most when considering both
cores. This is clearly much lower than the maximum possible
of 16 memory banks.
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One way of improving MLP is to cluster cache misses. In
Figure 2b, each core traverses its portion of the array in
a column-major fashion, instead of the row-major fashion

(shown in Figure 2a). This new traversal order clusters the
cache misses as they are now accessed in bursts. Therefore,
at the initial period of 4 data accesses, each core accesses 4
banks (assuming each request/miss goes to a diferent bank),
resulting in 8 banks being accessed when two cores are
considered. However, now, one can expect additional cache
misses since the new access pattern (which is column-wise)
does not align with the underlying row-major layout of the
array (in fact, in the worst case, after this transformations, all
hits in Figure 2a can get converted into misses in Figure 2b).
In other words, by going from Figure 2a to Figure 2b, we
improve MLP but distort cache locality. However, this can be
ixed, as suggested by [36], by tiling/strip-mining the inner-
most loop. The new post-tiling access pattern is illustrated in
Figure 2c. Thus, after the back-to-back optimizations of loop
permutation and tiling, we have the cache misses clustered
and, at the same time, we maintain the original cache locality
(number of cache hits).

Similar to optimizing MLP for LLC misses (red ovals in
Figure 2), we can also optimize CLP for LLC hits (yellow
ovals in Figure 2). There are two beneits of considering CLP
together with MLP. First, a higher CLP indicates better uti-
lization of LLC banks, and consequently reduces the LLC hits
latency by overlapping (in time) diferent LLC accesses. And,
second, a higher CLP means that requests are spread across
diferent nodes in the network more uniformly. This po-
tentially reduces the previously mentioned non-uniformity
of cache hit latencies, and also better balances the utiliza-
tions of network links and routers (i.e., reduces network
contentions as well). In this paper, we explore three opti-
mizations: MLP-irst, CLP-irst, and Balanced. In MLP-irst,
we irst optimize MLP, then CLP is optimized without distort-
ing optimized MLP. Alternately, in CLP-irst, we optimize
CLP as the primary target and MLP as the secondary. Finally,
in Balanced, we try to strike a balance betweenMLP and CLP.
The following discussion focuses mainly on MLP-irst. The
CLP-irst is quite similar and therefore we omit its detailed
discussion. Ωe discuss Balanced in Section 5.6.

4 High-Level Overview of Our Approach

It is to be noted that, clustering misses may not necessar-
ily guarantee high MLP. This is because it is possible that
the clustered misses still access only few memory banks.
Motivated by this observation, we propose a loop itera-
tion scheduling strategy where the clustered misses provide
the maximum values of MLP from both the inter-core and
the intra-core perspectives. Speciically, LLC misses issued
within tiles across diferent cores (inter-core), and LLCmisses
clustered within a tile of a given core (intra-core) access as
many diferent memory banks as possible.

Consider the example in Figure 3, which shows the array
access order after the loop permutation and strip-mining
(Section 3). For simplicity, let us assume that there are 4
memory banks and 4 LLC banks in the system. For a given
cache line (denoted as gray box), the corresponding memory
bank ID and LLC bank ID are labeled as a pair of number on
top of the irst data element in a given cache line.
For explanation purposes, in Figure 3a, we divide the

scheduling process into 4 phases (labeled as t0 to t3).
In this example, among the total 16 cache lines, there are 5

in memory bank-1, 4 in memory bank-2, 5 in memory bank-3,
and 2 in memory bank-4. In MLP-irst, our focus is on the
distinct memory banks accessed by LLC misses (red ovals).
Figure 3a depicts the default array accesses order without
our optimization. In phase t0, LLC misses from core0 access
two diferent memory banks (bank-2 and bank-1). Therefore,
the intra-core MLP for core0 is 2. In phase t2, the misses
from core0 access bank-3, bank-2, and bank-1, resulting in an
intra-core MLP value of 3. Hence, we can denote the intra-
core MLP of core0 as MLPcore0 = –2,3˝. Similarly, we have
intra-core MLP of core1 as MLPcore1 = –2,2˝. Compared to
intra-core MLP, inter-core MLP considers concurrent data ac-
cesses from diferent cores within the same execution phase.
Speciically, in phase t0, the misses from core0 and core1 ac-
cess bank-1, bank-2, and bank-4. As a result, we have MLPt0
= –3˝. Similarly, we calculate MLPt2 = –4˝ at phase t2.
Ωe now try to optimize both intra-core and inter-core

MLP. Figure 3b shows the new array reference order after
iteration scheduling. Note that the new array referencing
order is generated because of reordering the execution order
of loop iterations, not data layout transformation. Using the
same MLP calculation discussed above, the intra-core MLPs
of the new array reference order are MLPcore0=–3,4˝ and
MLPcore1=–4,3˝. Similarly, the inter-core MLPs are MLPt0=–4˝
and MLPt2=–4˝. As one can observe, the new loop iteration
order in Figure 3b improves both intra-core MLP and inter-
core MLP compared to the execution in Figure 3a.
An interesting observation is that two diferent iteration

schedules could have exactly the sameMLP values. For ex-
ample, Figure 3c has the same intra-core MLP and inter-core
MLP compared to Figure 3b, with a diferent loop iteration
execution order. This potential allows us to optimize CLP for
cache hits (denoted as yellow ovals in Figure 3), without com-

promising MLP. In Figure 3a, the second number in the pair
denotes the LLC bank ID. In total, there are 2 accesses to LLC
bank-1, 5 accesses to LLC bank-2, 4 accesses to LLC bank-3,
and 5 accesses to LLC bank-4. All the three hits (yellow ovals)
in a cache line access the same LLC bank. In the default loop
execution order (Figure 3a), cache hits from core0 access LLC
bank-3, LLC bank-2, and LLC bank-1, giving an intra-core
CLP of 3 in phase t1. Similarly, cache hits access LLC bank-2,
LLC bank-3, and LLC bank-4 in phase t3. As a result, the
intra-core CLP for core0 is CLPcore0=–3,3˝. Ωe apply the same
calculation for core1 and obtain CLPcore1=–3,3˝. Ωe can also
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(a) Default: Intra-core: MLPcore0=–2,3˝,

MLPcore1=–2,2˝, CLPcore0=–3,3˝,

CLPcore1=–3,3˝. Inter-core: MLPt0=–3˝,

MLPt2=–4˝, CLPt1=–4˝, CLPt3=–4˝.

(2,3)

(3,3)

(3,2)

(1,2)
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(4,3)

(1,4)

(2,4)

(1,1)

(3,1)

Core 0

Core 1

Cache line

(b) MLP only: Intra-core: MLPcore0=–3,4˝,

MLPcore1=–4,3˝, CLPcore0=–2,2˝,

CLPcore1=–3,2˝.Inter-core: MLPt0=–4˝,

MLPt2=–4˝, CLPt1=–3˝, CLPt3=–3˝.

(4,4)

(2,3)

(1,1)

(3,2)

(2,4)

(3,2)

(3,3)

(1,4)

(3,2)
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(2,3)

(1,2)

(1,4)

(3,1)

(2,2)

(4,3)

Core 0

Core 1

LLC hitLLC miss

(c) MLP-irst: Intra-core: MLPcore0=–4,3˝,

MLPcore1=–3,4˝, CLPcore0=–4,3˝,

CLPcore1=–3,4˝. Inter-core: MLPt0=–4˝,

MLPt2=–4˝, CLPt1=–4˝, CLPt3=–4˝.

Figure 3. Clustering array references to improve both intra-core MLP/CLP and inter-core MLP/CLP. The read oval in each
cache line represents LLC miss, whereas the subsequent yellow ovals represent LLC hits. Each cache line is associated with a
memory bank and an LLC bank. The pair (memory bank, LLC bank) above a cache line indicates the corresponding memory
bank ID and LLC bank ID.

calculate the inter-core CLP of Figure 3a. Cache hits from
core0 and core1 access all four LLC banks in phases t1 and t3,
respectively, resulting in inter-core CLPs as CLPt1=–4˝ and
CLPt3=–4˝.
Note that, while Figure 3b gives us the maximized MLP,

CLP is not optimized. In fact, the CLP in Figure 3b is
even worse compared to the CLP in Figure 3a. Speciically,
in Figure 3b, the intra-core CLPs are CLPcore0=–2,2˝ and
CLPcore1=–3,2˝, and the inter-core CLPs are CLPt1=–3˝ and
CLPt3=–3˝, which are lower compared to Figure 3a.

Finally, in Figure 3c, we take the optimization of CLP into
account while performing our loop iteration scheduling. This
gives us the optimized MLP as well as the optimized CLP.
Speciically, in this case, we have intra-core CLPcore0=–4,3˝,
CLPcore1=–3,4˝, and inter-core CLPt1=–4˝, CLPt3=–4˝. It should
be emphasized that, in our discussion so far, we have mainly
focused on the MLP-irst approach.

5 Details of the Optimizations

5.1 Formalization

Ωe now deine four important concepts employed by our
compiler framework: iteration block (IB), iteration window

(IW), data block (DB), and data set (DS). Among these four
concepts, IB and IΩ are deined on iteration space, whereas

DB and DS are deined on data space. The iteration space
of an m-level nested loop can be represented by an m-

dimensional vector ®i = (i1, i2, · · · , im)
T , delimited by loop

bounds {(l1,u1), (l2,u2), · · · , (lm ,um)}, where lk ≤ ik ≤ uk
and 1 ≤ k ≤ m. Each loop iteration is represented us-

ing an iteration vector ®i . Similarly, the data space for an
n-dimensional array can be represented by an n-dimensional

vector ®j = (j1, j2, · · · , jn)
T where jk (1 ≤ k ≤ n) is the index

of array element. Each array reference is represented by a
mapping from iteration space to data space. Given a loop

iteration vector ®i , the corresponding array reference (i.e.,

array index) is ®r = A®i + ®o, where A is the reference matrix
and ®o is the reference ofset3. For example, the reference to
arrayA[i1+ i2][i2+2] in two-level nested loop is represented

as ®r =

(

1 1
0 1

)

· ®i +

(

0
2

)

, where ®i = (i1, i2)
T .

Iteration Block (IB): An iteration block is the granular-
ity at which loop iterations are distributed across multi-
ple cores for execution. Given an m-level loop nest with
®i = (i1, i2, · · · , im)

T , an iteration block IB is deined as:

3In this paper, we focus on aine programs [11]. That is, the loop bounds

and array references are assumed to be aine functions of the loop iterators.

For an application program that has both aine and non-aine references,

our approach optimizes only the aine ones.
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(1) IB = { ®i1, ®i2, · · · , ®iq}, where each ®ix , (1 ≤ x ≤ q) is one
loop iteration.

(2) For any two loop iterations ®ix =

(ix1 , ix2 , · · · , ixt
︸            ︷︷            ︸

t

, ixt+1 , · · · , ixn )
T and ®iy =

(iy1 , iy2 , · · · , iyt
︸            ︷︷            ︸

t

, iyt+1 , · · · , iyn )
T (1 < x ,y < q, 1 < t < n)

that belong to the same IB, we have ixv = iyv (1 <= v <= t ).
The value of t determines the outermost t-level loops can
be potentially parallelized across multiple cores. In other
words, it speciies the size of an IB. Choosing a proper t
involves a tradeof between parallelism and cache locality.
Speciically, a small value of t indicates a parallelization of
the loop iterations across diferent cores in big chunks (IBs),
in which, consecutive data accesses to the same cache line
are contained in a single chunk and assigned to one core.
Ωhile this scenario is good for cache locality, there are two
drawbacks of using large-sized IB. First, a large block would
typically access many memory banks. As a result, we lose the
lexibility of scheduling IBs towards optimizing MLP. Second,
large blocks can also lead to imbalanced computation among
cores and sacriice performance due to less parallelism. On
the other hand, a large value of t (small-sized IBs) can hurt
cache locality. This is due to the fact that subsequent accesses
to the same cache line might be distributed across diferent
cores, resulting in extra cache misses from diferent cores. In
our framework, we choose to use proper small-sized iteration
blocks so that the loop nest can be parallelized in a ine-
granular and balanced fashion (Section 5.3). Meanwhile, loop
iterations that access the same cache line are grouped into
the same IB. Therefore, the temporal locality of accesses to
a cache line is maintained within an IB.
IterationWindow (IW):An iteration window is a group of
iteration blocks assigned to a core. Formally, an IΩ assigned
to core ci is denoted as IW(i, j) with 1 ≤ i ≤ C , whereC is the
total number of cores, and i and j denote the core ID and IΩ
ID, respectively. In our approach, an IΩ follows two rules:
(1) For any IW(i, j), IW(i,k ) (j < k) from core ci , loop iterations
in IW(i, j) are executed before loop iterations in IW(i,k ).
(2) For any two IW(m, j), IW(n, j) from cores cm and cn , loop
iterations from IW(m, j) and IW(n, j) are expected to execute
concurrently at runtime.
Rule (1) captures the execution order of IΩs within a core,
whereas rule (2) provides concurrent execution of IΩs from
multiple cores. Each IW(i, j) can be expanded as a set of
IBs, i.e., {IB(i, j,1), IB(i, j,2), · · · , IB(i, j,n)}. In general, we use a
large-sized IΩs, so that rule (2) can be satisied at runtime.
However, the size of IΩ cannot be arbitrary large. This is
because our loop permutation changes the data access order
within an IΩ, and we do not want to introduce extra cache
misses within an IΩ. Ωe discuss how we choose a proper
size of IΩ in Section 5.3.

Data Block (DB): A data block is a group of data elements
(addresses) in data space. Speciically, an DB can be ex-
pressed as a set of array elements accessed by array refer-
ences ({ ®r1, ®r2, · · · , ®rp }). In our framework, we use the cache
line size to determine the DB size (p). That is, array refer-
ences in the same DB are mapped to the same cache line,
and can potentially beneit from spatial locality. It is pos-
sible that multiple DBs are mapped to a single cache line,
but not the other way around. Recall that data accesses to
an n-dimensional array can be represented as vectors in the
data space ( ®rk = (rk1 , rk2 , · · · , rkn )

T , where 1 ≤ k ≤ p, and
rki (1 ≤ i ≤ n) is the array index in the ith dimension). An
DB can formally be deined as:
(1) DB = { ®r1, ®r2, · · · , ®rp }, and

(2) For any two ®rx = (rx1 , rx2 , · · · , rxu
︸             ︷︷             ︸

u

, rxu+1 , · · · , rxn )
T and

®ry = (ry1 , ry2 , · · · , ryu
︸             ︷︷             ︸

u

, ryu+1 , · · · , ryn )
T (1 ≤ x ,y ≤ p, 1 ≤

u ≤ n) in the same DB, we have rxv = ryv for any v where
1 ≤ v ≤ u and u is determined by the cache line size.
Data Set (DS): A data set is a group of DBs referenced by
loop iterations from the same iteration block (IB). The data
blocks (DBs) referenced by an IB can be inferred by applying
reference matrix and ofset to each iteration vector in the IB.
Speciically, an DS can be deined as follows:
(1) DS = {DB1,DB2, · · · ,DBn}, with DBx =

{ ®rx1, ®rx2, · · · , ®rxq}, where ®rx j = A ®ix j + ®o (1 ≤ j ≤ q).
(2) Given an array reference ®rx from DS , if ®rx ∈ DBi , then
DBi is included in DS .

To summarize, loop iterations in a loop nest are grouped
into IBs and IB is the granularity we use to parallelize and
schedule a loop nest (distribute its iterations) across multiple
cores. IBs within the same IΩ can execute in any order with-
out compromising cache locality. Further, IΩs are executed
sequentially within each core. The array references made by
an IB collectively constitute an DS. A DS may contain several
DBs. Array references to the same cache line are grouped
into the same DB.

5.2 Optimization Goal

Ωith these four concepts (IB, IΩ, DB, and DS) in place, we
are now ready to discuss our optimization target. Each DB is
associated with a memory bank and an LLC bank, based
on its address. Ωe use memory bank vector to represent
the memory bank of an DB. Given a memory bank vector
®b = (b1,b2, · · · ,bn), where n is the total number of mem-
ory banks, bit bi (1 ≤ i ≤ n) is set to 1 in a bank vector, if
the requested DB (cache line) is mapped to memory bank
i . Similarly, for LLC banks, we deine LLC bank vectors as
®c = (c1, c2, · · · , cl ), where l is the total number of LLC banks.

Ωe use
∑ ®b and

∑

®c to denote the total number of 1s in
memory bank vector and LLC bank vector, respectively. Ob-

viously, for ®b and ®c of a given DB, we have
∑ ®bDB = 1 and
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Algorithm 1MLP and CLP aware iteration block scheduling
(Single array, Manycore).

INPUT: Number of cores (N); Size of iterationwindow (Ω); Number of total iteration
blocks (M);

OUTPUT: Iteration windows to core mapping.
1: //get MLP vector of iteration blocks
2: function get_MLP_of_IB(IterationBlockPool)
3: for each I Bi in I terationBlockPool do

4: ®bI Bi ←
®0

5: data˙blocks ← дet˙data˙blocks(I Bi )
6: for each data block DBj in data˙blocks do

7: ®bI Bi ·∪ дet˙MLP˙V ector (DBj )

8: return ( ®bI B )

9: function Single_Core(Ω, MLPI B , IterationBlockPool, ®д)
10: iterationW indow ← �
11: ®l ← ®0 Intra-core MLP vector
12: T empSet ← �
13: //Schedule an iteration block if it improves MLP
14: for each I Bi in I terationBlockPool do

15:
−−−−−−→
tempд ←

−−−−→
MLP I Bi ·∪ ®д //calculate inter-core MLP

16: if
∑−−−−−−→
tempд >

∑

®д then

17: I terationW indow ∪ bi
18: Update IterationBlockPool and Ω

19: ®l ← ®l ·∪
−−−−→
MLP I Bi ; ®д ←

−−−−−−→
tempд

20: Break ifW == 0
21: else if

∑−−−−−−→
tempд ==

∑

®д then

22:
−−−−−→
templ ←

−−−−→
MLP I Bi ·∪

®l //calculate intra-core MLP

23: if
∑−−−−−→
templ >

∑ ®l then
24: I terationW indow ∪ bi
25: Update IterationBlockPool and Ω

26: ®l ←
−−−−−→
templ

27: Break ifW == 0
28: else if

∑−−−−−→
templ ==

∑ ®l then
29: T empSet ∪ I Bi

30: if
∑

( ®д ·∪ ®l ) ≥ β ×MAX ˙MLP then
31: Add remaining IBs in IterationBlockPool to TempSet
32: Break
33: //Schedule an iteration block if it improves CLP
34: ifW , 0 then
35: for each iteration block I Bi in T empSet do
36: Choose I Bi if it improve CLP.
37: r emove IBi f rom I terationBlockPool and T empSet
38: Break ifW == 0
39: return (I terationW indow, ®д)

40: k ← 0
41: Generate dependency of IterationBlockPool
42: MLPI B = get_MLP_of_IB(IterationBlockPool)
43: while There are iteration blocks in IterationBlockPool do
44: ®д ← ®0 //Inter-core MLP vector
45: for Ci f rom C1 to CN do
46: (IWk,Ci

, ®д) = Single_Core(W , MLPI B , IterationBlockPool, ®д)

47: schedulek ∪ IWk,Ci

48: k ← k + 1 //Increase 1 schedule time unit
∑

®cDB = 1, indicating that the references to an DB only
access one memory bank and one LLC bank.
An IB accesses a set of DBs (i.e., an DS). To capture the

memory banks accessed by an IB, we apply bit-wise or ( ·∪)
operation over all the bank vectors associated with the DBs
in an DS. Speciically, the bank vector of an IB is expressed

as ®bI B = ·∪{®bDB1 ,
®bDB2 , · · · ,

®bDBn }.
To optimize MLP, we further apply bitwise or ( ·∪) on mem-

ory bank vectors among IBs. At each scheduling step4, we

try to maximize
∑
·∪®b(i, j,k ), where i is the core id, j is the IΩ

4A scheduling step is a round of assigning iteration blocks to cores. More

speciically, at each scheduling step, we assign each core a number of itera-

tion blocks. This number is determined by the iteration window size.

id, and k is the IB id. For inter-core MLP, we choose the IBs

such that
∑
·∪®b(i, J ,k ) is maximum for a given IΩ J . Similarly,

for intra-core MLP, we maximize
∑
·∪®b(I , J ,k ) for a given core

I and a given IΩ J .
In the CLP-irst approach on the other hand, we calculate

CLP using the same approach discussed above, and the only
diference is that we replace memory bank vector with LLC
bank vector (®c) as our primary optimization target is CLP.

5.3 Loop Strip-Mining

Let us consider the two-level loop nest shown in Figure 4a.
There are three references to array a and one reference to
array b in each innermost loop iteration (ith dimension).
Focusing on array a, the corresponding data access pattern
is plotted in Figure 5a. Ωe assume that there is a total of
4 memory banks (the number in the oval is the bank ID).
Figure 4b and Figure 5b show the results of parallelizing
the outer j loop between two cores without applying our
approach. In our framework, we irst apply loop strip-mining
based on the iteration window size and the iteration block
size to eliminate the potential extra cache misses.
Iteration block size: Recall from Section 5.1 that small-
sized IBs can lead to extra cache misses, whereas large-sized
IBs can reduce MLP. In the example shown in Figure 4a,
there are three data references to array a in each innermost
loop iteration (a[j][i − 1], a[j][i], and a[j][i + 1]). As the
iterator (i) moves forward, these three references also move
forward as a łgroupž, as illustrated in Figure 5a. Since these
three references move across the boundaries between two
neighboring DBs (highlighted with square in the igure), it
is simply impossible to have each IB access only one data
block. Let us assume in this case that all three data references
go to the same DB from iteration 1 to k − 1 of the inner
ith loop. In the kth iteration, a[j][k + 1] refers to a data
element in the second DB, whereas a[j][k − 1] and a[j][k]
still refer to the data elements in the irst DB. Similarly, in the
(k + 1)th iteration, a[j][k + 2] and a[j][k + 1] refer to the data
elements in the second DB, whereas only a[j][k] refers to a
data element in the irst DB. Now, the question is: should we
group iterations k and k+1 in the irst IB or in the second IB?
Let us assume there are two diferent iteration blocks (IB1,
IB2) that are assigned to two diferent cores (c1, c2). Ωe want
iterations k and k + 1 both in either IB1 or IB2 so that only
one core (either c1 or c2) accesses both the DBs and the other
core accesses only one DB. For instance, the consequence of
grouping iterations k and k + 1 in IB1 is that IB2 starts with
iteration k + 2 which does not access the irst DB, as all of
the array indices (a[j][k + 1], a[j][k + 2], a[j][k + 3]) are in
the second DB. Otherwise, c1 needs to access 2 DBs, and c2
also needs to access 2 DBs.
Iteration window size: IBs are grouped into iteration win-
dows. The size of an IΩ is decided by the cache capacity.
Speciically,

IW ˙size = C/(D ∗ n), (1)
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for (j =0; j < m; j++)

for (i = 2; i < n; i++)

b[j][i] = a[j][i-1] + a[j][i] + a[j][i+1]

core 1:

for (j = 0; j < m/2; j++)

for (i = 2; i < n; i++)

b[j][i] = a[j][i-1] + a[j][i] + a[j][i+1]

core 2:

for (j = m/2; j < m; j++)

for (i = 2; i < n; i++)

b[j][i] = a[j][i-1] + a[j][i] + a[j][i+1]

for (iw = 0; iw < m; iw+=iw_size )

for (j = iw; j < iw+iw_size; j++)

for (ib = 2; ib < n; ib+=ib_size)

for (i = ib; i < ib+ib_size; i++)

b[j][i] = a[j][i-1] + a[j][i] + a[j][i+1]

ずaせoriginal code

ずbせnaive parallelization

ずcせloop strip mining

core 1: 

/**After computation-to-core assignment*/

for (iw from 1 to k) /**number of iteration windows/

for (each ib in iw) /**number of iteration blocks in a 

window */  

for (i = ib; i < ib+ib_size; i++)

j’ = calculate(iw, ib)

b[j’][i] = a[j’][i-1] + a[j’][i] + a[j’][i+1]

core 2: 

/**After computation-to-core assignment*/

for (iw from 1 to k) /**number of iteration windows/

for (each ib in iw) /**number of iteration blocks in a 

window */  

for (i = ib; i < ib+ib_size; i++)

j’ = calculate(iw, ib)

b[j’][i] = a[j’][i-1] + a[j’][i] + a[j’][i+1]

ずdせloop iteration block scheduling core 1: 

/**After computation-to-core assignment*/

for (iw from 1 to k) /**number of iteration windows/

for (i = ib; i < ib+ib_size; i++)    

for (each ib in iw) /**number of iteration blocks in 

a    window */  

j’ = calculate(iw, ib)

b[j’][i] = a[j’][i-1] + a[j’][i] + a[j’][i+1]

core 2: 

/**After computation-to-core assignment*/

for (iw from 1 to k) /**number of iteration windows/

for (i = ib; i < ib+ib_size; i++)    

for (each ib in iw) /**number of iteration blocks in 

a    window */  

j’ = calculate(iw, ib)

b[j’][i] = a[j’][i-1] + a[j’][i] + a[j’][i+1]

ずeせloop permutation

Figure 4. An example code fragment and its transformed versions after applying our optimizations.
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Figure 5. The corresponding memory access pattern of the code example in Figure 4. (a) Default access pattern. (b) Paralleliza-
tion between two cores. (c) Forming iteration block and iteration window. (d) Iteration block scheduling. (e) Loop permutation
to cluster cache misses.

where C is the cache capacity in terms of the number of
cache lines, D is the size of DS, and n is the number of cores.
Since the size of DS captures the number of DBs (cache
lines) accessed by an IB, the IΩ size captures the number of
maximum IBs per window without hurting cache locality.

5.4 Loop Iteration Block Scheduling

After the sizes of IB and IΩ are determined, we apply loop-
strip-mining (Figure 5c). Then, the loop nest after strip-
mining is treated as consecutive iteration blocks which are
input to our proposed IB scheduling (IterationBlockPool in
Algorithm 1). Ωe give the formal description of our sched-
uling approach in Algorithm 1. At high-level, Our scheme
tries to achieve two objectives: 1) at each time unit of sched-
uling, we choose an IB that improves inter-core MLP as well
as intra-core MLP, and 2) once the MLP cannot be improved
any further (in the MLP-irst approach), CLP is considered
as the next optimization target.5 To do that, there are three
steps involved in the algorithm: 1) dependence analysis at IB

5In the CLP-irst approach on the other hand, we try choose an IB that

improves CLP, and once the CLP cannot be improved any further, MLP

optimization is attempted.

granularity (line 41), 2) obtaining the MLP vector of each IB
(line 42), and 3) scheduling IBs for each core (lines 45 to 47).

Our approach starts by building dependence graph (DAG)
of iteration blocks. If two IBs are dependent, the necessary
ordering is enforced by inserting synchronization between
those two dependent iterations blocks. In subsequent IB
scheduling, we always try to select independent IBs for inter-
core optimization. If we cannot ind independent IB, depen-
dent IBs are chosen and correctness is guaranteed by syn-
chronizations. Ωe want to emphasize that, to reduce the
overhead of synchronization, after scheduling all IBs, we
perform a łtransitive closurež based synchronization mini-
mization strategy to remove redundant synchronizations.
Our loop iteration scheduling chooses IB from in

IterationBlockPool (line 46). Ωe deine one scheduling cycle
(time unit) as a round of assigning IBs to each core which
ills an iteration window (lines 9 to 39). The scheduling ends
when all the iteration blocks in IterationBlockPool have been
scheduled. Our IB scheduling consists of three major steps:
for each core and for each iteration window, (1) we irst
choose IBs that optimize inter-core MLP (lines 15 to 20), and
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then, (2) we select IBs that maximize intra-core MLP (lines
22 to 29), and inally, (3) if the iteration window still have
slots and the preferred value of MLP is reached (line 30), we
choose IBs that optimize CLP (lines 33 to 38). To be more
speciic, if a candidate IB contributes more to the inter-core
MLP or intra-core MLP, we schedule that IB in the current
IΩ. Otherwise, if the candidate provides the same MLP, we
add it to a TempSet , which holds all the candidates that can
be used for improving CLP. Ωe use a factor β (line 30) to
balance CLP and MLP (details are provided in Section 5.6).
The complexity of this algorithm is O(NM2), where N is
the number of cores and M is the total number of iteration
blocks.

Figures 4d and 5d give an example code fragment and the
corresponding array reference pattern, respectively, after
applying our iteration block scheduling. As can be seen from
Figure 5d, the inter-coreMLP is 4 for each of the four iteration
windows, and at the same time, the intra-core MLP is 2.
Clearly, compared to the default access pattern depicted in
Figure 5c (where MLP is 2 for inter-core and 1 for intra-core),
both inter-core and intra-core MLP are improved.

5.5 Loop Permutation

At this point, iteration blocks are scheduled across cores
and iteration windows are formed. The last step is loop per-
mutation. Recall from our discussion in Section 3 that we
interchange the innermost loop with the second innermost
loop such that the misses are grouped together to reach an
improved MLP. Ωe apply loop permutation to loop itera-
tions within an iteration window. Since all the data blocks
accessed by the iterations within an iteration window across
cores can it in the cache (due to our selection of the size of
iteration window), our permutation will t not cause any extra
cache misses. Figures 4e and 5e depict the loop nest body
and the array reference pattern, respectively, after applying
loop permutation.

Table 1. An example il-
lustrating the trade-of
between MLP and CLP.

Memory Banks LLC Banks
b0 b1 b2 b3 b0 b1 b2 b3

I B0 0 1 3 0 2 0 4 0
I B1 1 2 0 1 2 0 4 0
I B2 0 0 2 2 0 2 0 4
I B3 2 2 0 0 0 3 0 3

As a summary, our ap-
proach takes iteration blocks
(IterationBlockPool in Algo-
rithm 1) as input, where each
iteration block has its unique
identiier (id). Then, Algo-
rithm 1 picks up iteration
blocks from IterationBlock-
Pool and forms iteration win-
dow across the cores. As a re-

sult, each core is associated with a sequence of iteration
blocks. During execution, array reference index is derived
from iteration window id and iteration block id. Note that,
our approach generates the transformed source code of each
loop nest. In the experimental results discussed in Section 6
(in both the simulation and KNL experiments), we enabled
all vectorization and data locality optimizations. In KNL,

we used Intel compiler (icc) to generate code. In simulation-
based experiments, gcc code generator (with the highest
optimization level) is used.

5.6 Striking a Balance between CLP and MLP

Although our discussion above mainly focuses on MLP-irst
which takes CLP into consideration only as secondary objec-
tive, as an alternative approach, one can also choose CLP as
the primary optimization goal over MLP, or even choose to
trade MLP for CLP. To explain the beneits of doing so, let us
consider the access patterns of four iteration blocks, shown
in Table 1. Each value shown in the table represents the
number of accesses to a particular memory/LLC bank. Let
us assume that IB0 has already been scheduled, and we are
now choosing the next IB from IB1, IB2, and IB3. Based on

our previous discussion, we choose IB2 since
∑ ®bI B0

·∪ ®bI B1

is 4, meaning that MLP is maximized to 4. However, doing so
is not good from a CLP perspective, as it adds more latency
to LLC hits and the value of CLP is only 2 . This is because
both IB0 and IB1 access LLC banks b0 and b2, resulting in a
total of 4 (2+2) and 8 (4+4) accesses to LLC banks b0 and b2,
respectively. Since the hits in an LLC bank compete with one
another, this cache contention can easily ofset the potential
beneits coming from optimized MLP.
As a result, one may want to explore a more łbalanced

approachž between MLP and CLP. Ωe enable a tradeof be-
tween MLP and CLP by determining the value of parameter
β in Algorithm 1 (line 30). More speciically, we employ
the following optimization target:

Tarдet˙Metric = β ×MLP + (1 − β) ×CLP , (2)
where we have 0 ≤ β ≤ 1. To determine an optimum value
for β , we irst need to augment our approach explained so far
to take the number of bank accesses into consideration. More
speciically, we use integer values (instead of boolean values
which are used in previous discussion) for the entries in a
bank vector of an IB, so that we can capture the number of
accesses made to a given bank. Also, we deine an operation,
⊎, which performs the entry-wise addition between two
bank vectors, and compute the standard deviation (SD) for the
weighted MLP vector. Note that, SD captures the distribution
of accesses across diferent banks. In particular, a higher
SD indicates that the accesses are not balanced and some
banks have long service queues populated by many accesses,
whereas other banks have only a few accesses.

Let us assume that the request service latency at memory
banks is ηm and the service latency at LLC banks is ηn . Let
us further assume that the weighted bank MLP and CLP
vectors for the current iteration block IB(c)urrent are ®mc and
®cc , respectively, and we are selecting the next iteration block
from IBx and IBy . Ωe use ®mx and ®cx to denote, respectively,
the MLP vector and CLP vector of IBx . Similarly for IBy , we
have ®my and ®cy . Ωe can calculate the corresponding stan-
dard deviation between IBc and IBx using SDm(IBc , IBx ) =
SDm(( ®mc ⊎ ®mx )∗ηm). In terms of CLP, the corresponding SD
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is SDc (IBc , IBx ) = SDc (( ®cc ⊎ ®cx ) ∗ ηc ). Therefore, we have
SD(IBc , IBx ) = SDm(IBc , IBx ) + SDc (IBc , IBx ). Ωe then de-
ine δ = SD(IBc , IBx )−SD(IBc , IBy ) to capture the diference
of SDs between two iteration blocks IBx and IBy . If δ > 0,
it indicates that choosing IBy is better since a smaller value
of SD indicates a more balanced distribution of accesses to
diferent banks. On the other hand, if δ = 0, we randomly
choose one iteration block from IBx and IBy .
Note that, to reduce potential overheads, we only per-

form SD analysis for the irst two iteration blocks of each
iteration window. After we select the irst two blocks, we
check the MLP vector and CLP vector of the chosen iter-
ation block and determine the value of β . In other words,
we choose the most beneicial iteration blocks (in terms of
a both CLP and MLP) at the beginning of constructing an
iteration window. Ωe then use the obtained β to choose the
successive iteration blocks for that iteration window. That
is, our compiler automatically determines the value of β for
each iteration window. Later, we present the distribution of
β values determined by our approach.

5.7 Discussion

Ωe now discuss the generality of our approach. If the target
system employs dynamic NUCA (DNUCA) where a cache
line doesn’t have a ixed home bank and can reside in any
cache bank in the system, our approach can be augmented to
predict the locations (LLC bank) for DBs (for the next sched-
uling epoch). Equipped with such prediction, our approach
can be used for DNUCA as well. If the LLCs are private
(which is not very common), our approach will have limited
impact on CLP. However, we want to emphasize that, even
when the target-system employs DNUCA or private LLC,
our framework will still improve MLP. Also, our approach
works with diferent NoC topologies (e.g., mesh, butterly,
etc). As long as the information of cache/memory placement,
cache management policy (i.e., SNUCA or DNUCA), and
network topology are exposed to our compiler, we can apply
our optimization on CLP and MLP.

6 Experimental Evaluation

6.1 Setup

Ωe conducted both a simulation based study as well as exper-
iments on a commercial manycore architecture. The reason
why we performed simulation based experiments is two-
fold. First, it is not possible to extract CLP and MLP informa-
tion from a real hardware, as current performance counters,
debugging tools and performance evaluation tools do not
provide CLP or MLP statistics. Second, to see how our pro-
posed compiler based approach performs under diferent
architectures, we wanted to change some of the architec-
tural parameters, and this could be done only in a simulation
based environment. However, in addition to the simulation
based experiments, we also performed experiments on Intel

Table 2. System setup.
Manycore Size, Frequency 36 cores (6 × 6), 1 GHz, 2-issue
L1 Cache 16 KB; 8-way; 32 bytes/line
L2 Cache 512 KB/core; 16-way; 128 bytes/line
Hardware Prefetcher stream prefetcher with 32 streams, prefetch

degree of 4, prefetch distance of 64 cache lines
Coherence Protocol MOESI
Router Overhead 3 cycles
Memory Row Size 2 KB
On-Chip Network Frequency 1 GHz
Routing Policy X-Y routing
DRAM Controller open-row policy using FR-FCFS scheduling policy

128-entry MSHR and memory request queue
DRAM DDR4-2400; 250 request bufer entries

4 MCs; 1 rank/channel; 8 banks/rank
Row-Bufer Size 2 KB
Operating System Linux 4.7
Data Distribution 2KB granularity, round-robin
Across Memory Banks
Data Distribution 128 bytes granularity, round-robin
Across LLC Banks

Knight’s Landing [45], a commercial manycore/accelerator
system. In KNL, each experiment is repeated 15 times, and
the median-value is used in the presented-plots. The vari-
ance between the lowest and highest values was less than
2% in all experiments.
For our simulation based experiments, we used gem5 [2]

infrastructure to execute 12 multithreaded applications in
the full system mode. Ten of our twelve multithreaded ap-
plications are from Splash-2 [57] and the remaining two are
matrix multiplication (mxm) and syr2k, a kernel that per-
forms a rank-2k matrix-matrix operation. The input dataset
sizes of these applications vary between 33.1 MB and 1.4
GB, and their LLC (L2) cache miss rates range from 16.6% to
37.2% (in simulator). Also, the number of iteration blocks (as
deined in Section 5.1) ranges between 8,032 and 31,554.
Ωe used LLVM [3] to implement our compiler sup-

port. Table 2 gives the important parameters of the many-
core/memory conigurations modeled in this work using
gem5. In most of our simulation-based experiments, we used
36 cores and parallelized each application program such
that each core executes one thread at a time (i.e., one-to-
one thread-to-core mapping In all experiments, we set the
scheduling epoch length 2500 cycles. Ωe also enable both
vectorization and the hardware-based prefetcher (stream-
prefetcher).
In this work, we compare eight diferent versions for the

execution of our application programs:

• Default: In this version (also called the original version), the
iterations of a loop nest are divided into iteration blocks of
equal size, and the resulting iteration blocks are assigned to
available cores in a round-robin fashion. Unless stated other-
wise, the results with all the remaining versions described
below are normalized with respect to this version.
• Clustering: This version implements the approach in [36].
Ωhile it clusters the LLC misses, it does not speciically
consider cache-level parallelism.
•MLP-irst: In this version, MLP is optimized aggressively
using the approach explained in Section 5.4. As noted there,
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CLP is considered, as a secondary optimization, only if
doing so does not hurt MLP.
• CLP-irst: This is the other extreme where CLP is aggres-
sively exploited irst, and MLP is considered only if doing
so does not hurt CLP.
• Balanced: This is the approach defended in Section 5.6,
where the compiler tries to determine the value of β param-
eter to co-optimize (balance)MLP and CLP so that maximum
performance can be achieved. It is important to note that
MLP-irst and CLP-irst are just two diferent incarnations
of Balanced, with β = 1 and β = 0, respectively.
• Locality-Aware-MLP: This is a recently published compiler
approach [8] that targets optimizing bank-level parallelism
in a locality-conscious (row-bufer aware) manner. It does
not consider CLP; however, it considers row-bufer locality.
• PAR-BS: This is a pure hardware based optimization scheme
proposed by [34]. It (i) handles DRAM requests in batches
to provide fairness across competing memory requests com-
ing from diferent threads, and (ii) employs a parallelism-
aware DRAM scheduling policy with the goal of processing
requests from threads in parallel in the DRAM banks, to
improve memory bank-level parallelism.
• Ideal: This version represents the maximum potential sav-

ings. It is implemented in the simulator by maximizing both
MLP and CLP. It, in a sense achieves, at the same time, the
MLP performance of MLP-irst, and the CLP performance
of CLP-irst. Note that, this version is not practical as CLP
and MLP can conlict with one another, and it is not always
possible to maximize the both at the same time.

Ωhile we tested all these versions in our simulator (gem5),
the PAR-BS and Ideal versions could not be used on Intel
manycore system, as the former is a pure hardware based
scheme that requires architectural modiications and the lat-
ter represents a limit study that can be evaluated only in a
simulated environment. Ωe also want to emphasize that, un-
less stated otherwise, all these versions have the same degree

of compute parallelism and use the same set of conventional

data locality optimizations (such as loop permutation and
tiling that collectively minimize the number of LLC misses),
and that they only difer how they map and schedule it-
eration blocks. The accuracy of the CME implementation
employed in estimating LLC misses ranged between 79.14%
and 88.36%.

6.2 Results with the Manycore Simulator

Ωe present the MLP results in Figure 6. As expected, MLP-
irst generates the best MLP results. Ωhile CLP-irst per-
forms much worse than MLP-irst, it is still better than the
default version, as CLP-irst considers MLP if doing so does
not hurt CLP. Also, Clustering does not perform very well,
as mere clustering of memory accesses does not guarantee
MLP improvement (though it performs, as can be expected,
better than the default version). Overall, PAR-BS performs
slightly better than Clustering; but, since the throughput

0

5

10

15

20

25

30

M
L

P

Default Clustering MLP-first CLP-first Balanced Locality-Aware-MLP PAR-BS

Figure 6. MLP Results.
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Figure 7. CLP Results.

optimization it brings is balanced with fairness optimiza-
tion, its performance is not as good as Balanced. Also, since
PAR-BS is a pure hardware optimization, it is not as good as
compiler based schemes that have the lexibility of perform-
ing whole program analysis. Finally, Locality-Aware-MLP
generates comparable MLP results to Balanced, and Balanced
outperforms all the versions tested (except MLP-irst).
Figure 7 presents the CLP results produced by the same

versions. It can be observed that Clustering, MLP-irst, and
Locality-Aware-MLP do not perform very well as far as CLP
is concerned, though they are in general better than the de-
fault version. This is hardly surprising, as these versions do
not speciically target CLP. PAR-BS does not perform any
better than Default, primarily because the former mainly tar-
gets MLP, not CLP. In comparison, Balanced performs quite
well in terms of CLP, and the average CLP values Balanced
and CLP-irst bring are about 20.59 and 24.16, respectively.

Before presenting the execution cycle results, we want to
discuss the impact of these versions on cache miss statistics
and row-bufer statistics (as those two metrics are generally
afected by how computations are scheduled). Figure 8 gives
the percentage increases in LLC miss rates (over the default
version) when using optimized versions. Ωe observe that,
none of these versions (Clustering, MLP-irst, CLP-irst, Bal-
anced, Locality-Aware-MLP, and PAR-BS) has any noticeable
impact on cache miss statistics, compared the default version
(the highest increase on the L2 misses over the default ver-
sion was about 1.48%). This is because Clustering, MLP-irst,
CLP-irst, and Balanced are designed, as explained earlier, to
make sure that cache misses are not increased. On the other
hand, Locality-Aware-MLP improves row-bufer locality (to
be presented shortly), and that slightly improves, as a side
efect, cache hits as well. Figure 9, on the other hand, shows
the variations (increase) in row-bufer misses, with respect
to the default version. These results indicate that, most of the
versions tested do not cause signiicant variations on row-
bufer misses (in fact, all observed variations are between
-2% and 2%). As expected, Locality-Aware-MLP leads to some
improvement on row-bufer misses.
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Figure 8. Increase in LLC miss rates (lower, the better).
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Figure 11. Distribution of the compiler-determined β values
across all loop nest of our applications.

Figure 10 gives, for each version, the performance im-
provement (parallel execution time reduction) it brings over
the default version (higher, the better). Note that, in these
results, for a given version, all its impact on diferent metrics
(e.g., CLP, MLP, row bufer miss rate, LLC miss rate) as well
as all other overheads it incurs are included. Ωe observe
from these results that, our defended approach (Balanced)
outperforms all remaining versions in all the 12 benchmarks
tested (except Ideal, of course). This is because, as explained
in Section 5.6, Balanced tries to perform the best trade-of
between CLP and MLP, instead of trying to optimize one of
them very aggressively (which is the case in CLP-irst and
MLP-irst). Clustering does not perform well, as it fails to
tap the full potential of bank-level parallelism and cache-
level parallelism. On the other hand, Locality-Aware-MLP
performs worse than our approach, as it does not consider
CLP at all. Similarly, the improvements brought by PAR-BS
are lower than those obtained using Balanced, as the former
cannot optimize CLP. Further, note that, PAR-BS requires
architecture level modiications, whereas our approach is
a software-only solution. Overall, these results clearly un-
derline the importance of optimizing both MLP and CLP
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Figure 12. Results with łall-to-allž cluster mode and łcachež
memory mode.
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Figure 13. Results with łquadrantž cluster mode and łcachež
memory mode.

together (in fact, Balanced brought an average performance
improvement of 17.32% over the default scheme). Finally, the
diference between Balanced and Ideal indicates that there is
still some additional optimization opportunities that could
be exploited by a more sophisticated compiler scheme.
Next, we delve into the behavior of Balanced a bit more,

and explain the distribution of the compiler-determined β

values across all the loop nests of a given application. These
distribution results, plotted in Figure 11, indicate that, for
an overwhelming majority of the loop nests in these 12 ap-
plications, the determined β values fall between 0.3 and 0.8,
indicating that our approach (Balanced) really balances MLP
and CLP quite well. These results also explain why Balanced
performs better than CLP-First and MLP-irst.

6.3 Results with Intel Knight’s Landing

Recall from Section 2 that this architecture supports various
łmemory modesž and łcluster modesž. Ωe tested each of the
three cluster modes (all-to-all, quadrant and sub-NUMA) un-
der twomemorymodes. The irst memorymode is the łcache
modež where all of the MCDRAM behave as a memory-side
direct mapped cache in front of DDR4. Consequently, there
is only a single visible pool of memory, and MCDRAM is
simply treated as a high bandwidth (L3) cache. The second
memory mode used is łhybrid modež where some of MC-
DRAM space is conigured as memory extension and the
remaining MCDRAM space is conigured as L3 cache. In
this case, we proiled the applications in our experimental
suite and allocated the some select data structures from the
memory extension part of MCDRAM. Since the observed
trends and overall conclusions with the cache and hybrid
memory modes were similar, we present results from only
the cache mode.

The KNL results are plotted in Figures 12, 13 and 14 for the
łall-to-all+cachež, łquadrant+cachež and łsub-NUMA+cachež
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Figure 14. Results with łsub-NUMAž cluster mode and
łcachež memory mode.

conigurations, respectively. For each coniguration, we per-
formed two types of experiments: one with O2 compiler lag
and one with O3 compiler lag. O2 corresponds to default set
of icc optimizations; it includes vectorization as well as some
loop transformations such as loop unrolling and inlining
within source ile. In O3 on the other hand, the compiler ac-
tivates all optimizations in O2 level; in addition, it also uses
more aggressive loop optimizations such as cache blocking
(tiling), loop fusion, and loop interchange.

One can make several observations from the results pre-
sented in Figures 12, 13 and 14 (higher, the better). First,
our approach improves the performance of all cluster nodes
in all application programs tested. Second, the relative per-
formance variations we observed in our simulation based
experiments are valid in Intel Knight’s Landing case as well.
In particular, Balanced outperforms the remaining versions
under all cluster modes, and MLP-First comes the second.
Third, our approach (which is oriented towards reducing the
latencies of both cache hits and cache misses) blends well
with the traditional locality optimizations. More speciically,
it can be observed that, as wemove fromO2 to O3, the overall
execution time savings signiicantly improve. For example,
in the case of the quadrant cluster mode, the average perfor-
mance improvements brought (over the default version) are
25.69% and 32.54%, under O2 and O3, respectively.

7 Discussion of Related Work

Software Approaches to Memory-Level Paral-

lelism: Pai et al. [36] proposed code transformations
to increase memory parallelism by overlapping multiple
read misses within the same instruction window, while
preserving cache locality. Compared to their work, ours
focuses on multithreaded applications running on many-
cores. Further, we propose iteration scheduling upon miss
clustering (permutation), to improve inter-core MLP, and
we consider CLP as well. In our experimental evaluations,
we compared our proposed approach against [36] (which is
annotated as Clustering in the experimental results). Ding
et al. [8] proposed loop tile scheduling to improve bank
level parallelism. Their approach schedules the tiled loop
iterations across cores targeting BLP optimization. It does
not consider CLP. Ωe compared our approach to this prior
work in our experimental evaluations. Targeting irregular
applications, Tang et al. [49] proposed an inspector-executor
based loop scheduling to improve bank-level parallelism

across cores and row-bufer locality from each core’s
perspective. Compared to those two works, instead of
focusing row-bufer locality, we demonstrate that intra-core
MLP is also important, and our approach considers both
inter-core and intra-core MLP. Further, we consider CLP to
improve performance by reducing cache hits latencies.
Hardware Approaches to Memory-Level Paral-

lelism: There have also been hardware researches optimize
memory accesses in manycore systems [5, 10, 14, 15, 40, 59].
Mutlu et al. [34] proposed memory request batching to
improve intra-thread bank-level parallelism while preserv-
ing row-bufer locality. Recall that, in our experimental
evaluations presented earlier, we compared our approach
to this pure hardware optimization. Qureshi et al. [39]
proposed a MLP-aware cache management to reduce the
memory stalls. Lee et al. [27] proposed BLP-aware memory
prefetching to maximize the BLP of prefetch requests
exposed to the DRAM controller. Compared to all these
hardware eforts, we reduce the hardware design complexity
by employing a łsoftware-onlyž solution to improve MLP.
Traditional Data Locality Optimizations: The compiler
literature is full of optimization techniques that target reduc-
ing the number of cache misses [1, 4, 6, 7, 12, 18, 19, 26, 28ś
31, 35, 47, 53ś56]. There also exist cache bandwidth opti-
mizations [16, 17, 46]. Our work presented in this paper is
fundamentally diferent from these prior works, as it tries
to optimize cache hit and miss latencies, instead of reducing
the number of cache misses. Clearly, these two approaches
(reducing the number of misses and reducing the miss la-
tency) are complementary, and one would normally need
to employ the both to maximize performance beneits (as
already demonstrated with our O2/O3 results in KNL).

8 Conclusions

Targeting data access parallelism, we propose three alterna-
tive optimization strategies: (i) MLP-irst, which primarily
optimizes memory-level parallelism for LLC misses, (ii) CLP-
irst, which primarily optimizes cache-level parallelism for
LLC hits, and (iii) Balanced, which strikes a balance between
MLP and CLP. Our simulations show that the proposed three
approaches bring 11.31%, 9.43%, and 17.32% reduction in ex-
ecution times. Ωe also tested our approach on a commercial
manycore architecture, and the results collected indicate
17.06%, 15.19% and 26.15% average execution time savings
with MLP-irst, CLP-irst and Balanced, respectively.
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