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One cost that plays a signiicant role in shaping the overall performance of both single-threaded and multi-

thread applications in modern computing systems is the cost of moving data between compute elements and

storage elements. Traditional approaches to address this cost are code and data layout reorganizations and

various hardware enhancements. More recently, an alternative paradigm, called Near Data Computing (NDC)

or Near Data Processing (NDP), has been shown to be efective in reducing the data movements costs, by

moving computation to data, instead of the traditional approach of moving data to computation. Unfortunately,

the existing Near Data Computing proposals require signiicant modiications to hardware and are yet to be

widely adopted.

In this paper, we present a software-only (compiler-driven) approach to reducing data movement costs in

both single-threaded and multi-threaded applications. Our approach, referred to as Computing with Near

Data (CND), is built upon a concept called “recomputationž, in which a costly data access is replaced by a few

less costly data accesses plus some extra computation, if the cumulative cost of the latter is less than that of

the costly data access. If implemented carefully, CND can successfully trade of data access with computation,

and considering the continuously increasing latency gap between the two, doing so can signiicantly reduce

the execution latencies of both sequential and parallel application programs.

We i) quantify the intrinsic recomputability of a set of single-threaded and multi-threaded applications, ii)

propose a practical, compiler-driven approach that automatically transforms a given application code fragment

to a version that employs recomputation, iii) discuss an optimization strategy that increases recomputability;

and iv) compare CND, both qualitatively and quantitatively, against NDC. Our experimental analysis of

CND reveals that i) the average recomputability across our benchmarks is 51.1%, ii) our compiler-driven

strategy is able to exploit 79.3% of the recomputation opportunities presented by our workloads, and iii) our

enhancements increase the value of the recomputability metric signiicantly. As a result, our compiler-driven

approach with the proposed enhancements brings an average execution time improvement of 40.1%.
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1 INTRODUCTION

Conventional computing uses memory to store input data, intermediate data, and output data.
Data are read from memory whenever needed, computations are performed on the read data, and
the updated data are stored back in memory. As a result, in conventional computing, “memory
accessž plays a central role that determines performance as well as power consumption. Observing
this, many prior research papers considered eicient management of data movements across
various layers in cache-memory-storage hierarchy. The proposed techniques include data locality
optimizations in software [17, 31, 36, 37, 39, 56, 61, 64] and hardware [13, 28, 33, 46, 59, 60, 70],
careful design andmanagement of cache andmemory hierarchies [13, 54, 69, 71], as well as proposals
oriented towards taking advantage of memory-level parallelism [38, 43, 53, 58].
Unfortunately, the relative cost of a data access is continuously increasing compared to the

relative cost of a computation, and today, depending on the location of data, performing a data
access can incur a much higher cost (latency measured in terms of CPU cycles) than performing a
computation. Table 1 gives the costs of data accesses from diferent layers in a memory hierarchy
for representative CPU and GPU based systems. While these numbers already point to a problem
for application programs that make frequent data accesses, one can expect the situation to be even
worse as big data becomes more prevalent. In particular, despite the large cache memory spaces
made available with modern computer architectures, increases in sheer data sizes and workloads
with irregular data accesses (e.g., graph processing applications) make it extremely diicult to
guarantee that most of data accesses would be satisied from the caches that are close to compute
units and would, as a result, incur relatively low overheads.
Motivated by this, more recently, a new computation paradigm called “near data computingž

(NDC) has emerged [8, 16, 19, 27, 40, 44]. The main idea behind NDC is to perform computation
in or around where data currently is, that is, moving computation to data, instead of moving
data to computation (as in the traditional computing paradigm). Popular incarnations of this
approach include emerging technologies, such as Hybrid Memory Cube (HMC [30]) that enable
processing-in-memory (PIM [24]) functionality as well as computation-in-network [25, 47]. It needs
to be emphasized that such techniques can signiicantly reduce data access latencies and in turn
boost application performance. However, most of the existing NDC proposals require signiicant
architectural modiications and current NDC-based architectures also lack software support.

Table 1. Latency of data accesses on modern architectures.

L1 cache hits L2 cache hits LLC cache hits DRAM

Intel Xeon [2] 4 cycles 12 cycles ∼38 cycles ∼38 cycles + ∼46 ns
Intel i7 [3] 4 cycles 14 cycles 68 cycles 79 cycles + 50 ns

Nvidia V100 [5] ∼28 cycles ∼193 cycles N/A ∼1029cycles
AMD Ryzen 7 [4] 4 cycles 17 cycles ∼37 cycles 40 cycles + 90 ns

In this paper, we take a diferent look at the growing costs of data accesses, and propose “com-
puting with near dataž, CND, as another way of reducing data access and movement latencies.
As opposed NDC, our CND does not require any hardware modiication, and instead employs a
software-based concept called recomputation. In recomputation, a costly data access is replaced by
a few less costly data accesses plus some extra computation, if the cumulative cost of the latter
is less than that of the costly data access. An example would be recomputing the value of a data
element that resides in of-chip memory using data elements that are available in on-chip caches,
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instead of directly performing the costly of-chip access. Thus, if implemented carefully, CND can
successfully trade of data access with computation, and considering the continuously increasing
latency gap between the two, doing so can signiicantly reduce the execution latencies of both
sequential and parallel application programs.
Targeting emerging manycore systems and using a diverse set of single-threaded and multi-

threaded workloads, this paper makes four main contributions:

• It deines a new metric called recomputability which captures the possibility of recomputing the
value of a variable. It then presents a detailed analysis of various application workloads from a
recomputability perspective. This experimental analysis also reveals the “limitsž of recomputability
if no extra efort is made to improve it. The collected experimental results indicate that the average
recomputability across our benchmarks is about 51.1%.
• It presents a practical approach to computing with near data (CND) that employs recomputation
in a “data locality-awarež fashion. This approach relies on compiler for both code analysis and
code transformation, e.g., replacing a data reference (access) with its “recomputed versionž. Our
experimental data indicate that the proposed compiler-based approach is able to exploit 79.3%
of the recomputation opportunities presented by our workloads. The paper also discusses the
reasons behind the untapped potential.
• It presents a technique to improve the value of the recomputability metric. This technique is based
on the duplication/copy of a variable’s value that is critical for recomputation. Our experimental
evaluation of this technique shows that it increases the value of the recomputability metric
signiicantly. As a result, now, our compiler-based approach brings an average execution time
improvement of 40.1%.
• It compares CND against three “idealž incarnations of NDC, and shows that CND outperforms all
three NDC approaches for all the benchmark programs tested.

The next section gives an overview of the manycore architecture used in this study. Section 3 pro-
vides a high-level overview of our approach through several motivational examples, and also point
out various issues that would be faced by any recomputation-based optimization strategy. Section 4
compares CND and NDC qualitatively, and Section 5 presents our workloads and experimental
methodology. Section 6 proposes several metrics and quantiies the inherent recomputability of
our workloads. Section 7 presents a compiler-driven strategy oriented towards taking advantage
of recomputation opportunities in our workloads. Section 8 discusses a strategy to increase the
opportunities for recomputation. A quantitative comparison of CND against NDC is given in
Section 9. Section 10 discusses the prior works related to our proposal, and the paper is concluded,
in Section 11, with a summary of its major contributions and a brief outline of the planned future
work.

2 TARGET MANYCORE

In this paper, we use Intel Xeon Phi Knights Landing (KNL) as our targeted manycore architec-
ture [55], though our analysis and optimizations are applicable to other manycore systems as well.
As depicted in Figure 1, KNL consists of 36 (6×6) tiles and these tiles are connected via a mesh-based
on-chip network. Each tile has two cores and a 1 MB L2 cache shared between them. Note that the
L2 cache is private to each tile and directory-based cache coherence is maintained across L2 caches
in diferent tiles. Each core in a tile consists of two vector units to execute vector instructions,
as well as a core-private L1 cache. The KNL is equipped with a 16 GB on-package multi-channel
DRAM memory (MCDRAM), which is partitioned into 8 channels. Each channel is managed by a
memory controller (EDC) and all 8 EDCs are attached to the four corners of the on-chip network.
Data access requests (if missed in the L2 cache), are forwarded to corresponding EDC and the
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Fig. 1. Our target manycore architecture.

requested data are sent back to the requesting tile. Apart from MCDRAM, the KNL has two DDR
memory controllers (MC) and each MC controls 3 channels of DDR4 of-chip memory. In total, the
KNL consists of 6 channels of DDR4 of-chip memory working at 2,400 MHz, and the capacity of
DDR4 supports can be up to 384 GB.
To reduce the on-chip network data movements, the KNL provides three diferent “cluster

modesž: i) “all-to-allž mode, ii) “quadrantž mode, and iii) “sub-NUMAž (SNC-4) mode. In “all-to-allž
mode, addresses are uniformly spread across caches and memory channels, which means that
the requested data from a tile can reside in any tile’s L2 cache (subject to coherence) or in any
memory channel. In “quadrantž mode, on the other hand, the on-chip network is partitioned into
four quadrants; although the requested data from a tile can be in any tile’s L2 cache, it can only
access the two MCDRAM channels that are attached to that quadrant. Finally, in “SNC-4ž mode,
the mesh network is split into 4 NUMA sub-regions, which means both L2 accesses and memory
accesses are limited within a sub-region.

In addition to cluster modes, the KNL also provides three diferent conigurations for MCDRAM,
know as “memory modesž. In “cache modež, the MCDRAM acts entirely as a last-level cache (LLC).
In “lat modež, the MCDRAM is conigured as normal addressable memory. Finally, in “hybrid
modež, 25% (or 50%) capacity of MCDRAM is conigured as LLC and the remaining capacity is
conigured as addressable memory.

3 HIGH LEVEL VIEW OF CND AND POTENTIAL PROBLEMS

3.1 Motivational Examples

Figure 2a presents a code example that can be used to illustrate the idea behind recomputation and
CND. We focus on two particular statements (Sx and Sy ). Let us assume that execution is currently
on statement Sy , and the current locations of data elements are as shown in Figure 3a. When
Sy is executed, normally (i.e., in the traditional computing paradigm), a main memory access is
performed for a[i], as a[i] is present in the of-chip main memory. In comparison, when employing
CND, we recompute the value of a[i], using b[i] and c[i] and an extra addition. Assuming, for
illustrative purposes, that the access latencies for the current locations where a[i], b[i], and c[i] are
stored are 200 cycles, 2 cycles and 20 cycles, respectively, and the cost of an addition operation
is 1 cycle, using recomputation instead of direct memory access for a[i] can give us 177 (=200-
(2+20+1)) cycles saving. Clearly, recomputation may not be beneicial for every case. Consider, for
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for(i=0; i<n; i++)

…
a[i] = b[i] + c[i] /** Sx */

… 
d[i] = a[i] + const /** Sy*/

…
endfor

(a)

for(i=0; i<n; i++)

…
a[i] = b[i] + c[i] /** Sx */

… 
d[i] = b[i] + c[i] + const /** Sy*/

…
endfor

(b)

for(i=0; i<n; i++)

…
a[i] = b[i] + c[i] /** Sx */

… 
d[i] = a[i] + const /** Sy*/

e[i] = f[i] * 3 /** Sz*/

…
endfor

(c)

for(i=0; i<n; i++)

…
a[i] = b[i] + c[i] /** Sx */

…
b[i] = 3*x[i] /** Sk*/

… 
d[i] = a[i] + const /** Sy*/

…
endfor

(d)

Fig. 2. Code examples.
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Fig. 3. Data locations of diferent data elements for the code fragments in Figure 2.

instance, the alternate locations for the same three data elements depicted in Figure 3b. In this case,
recomputation would not work well as employing it would lead to a cost of 221 (=200+20+1) cycles.

Note that, for recomputation to be useful, the costly access (one to be replaced by recomputation)
does not need to be in of-chip memory. Consider the same code snippet in Figure 2a. If a[i] is
present in L2 cache, and b[i] and c[i] are present in L1 cache (illustrated in Figure 3c), it can still be
beneicial to recompute a[i] in statement Sy using b[i] and c[i], as doing so replaces the costly L2
cache access with two less expensive L1 cache accesses and 1 addition operation.

3.2 Interaction with Data Locality

It is to be observed that CND is applicable even to codes that have already been heavily optimized for
data locality, as even in such codes a large fraction of data would reside in costly storage locations.
It is also important to note however that recomputation usually changes the locations of the data
involved as well and, as a result, the locality of diferent data accesses, and this can lead to a conlict
between employing recomputation and exploiting cache locality. Consider another code example
(illustrated in Figure 2c) with an added statement Sz to the code sample in Figure 2a. Statement
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for(i=0; i<n; i++)

…
x[i] = a[i] + b[i] /** Sx */

…
y[i] = c[i] + d[i] /** Sy*/

… 
e[i] = x[i] + y[i] /** Sz*/

…
endfor

(a)

for(i=0; i<n; i++)

…
x[i] = a[i] + b[i] /** Sx */

…
y[i] = c[i] + d[i] /** Sy*/

… 
e[i] = x[i] + c[i] + d[i] /** Sz*/

…
endfor

(b)

for(i=0; i<n; i++)

…
x[i] = a[i] + b[i] /** Sx */

…
y[i] = c[i] + d[i] /** Sy*/

… 
e[i] = a[i] + b[i] + c[i] + d[i] /** Sz*/

…
endfor

(c)

Fig. 4. Example illustrating diferent versions (paths) of recomputation.

Sz is executed immediately after statement Sy . Let us assume we choose to recompute a[i] in Sy
using b[i] and c[i] because the data locations are the same as in Figure 3a. However, doing so will
fetch both b[i] and c[i] into the L1 cache while executing Sy . In other words, during recomputation,
more data elements are fetched into the L1 cache compared to the original case (where only a[i]
is fetched into the L1 cache). Let us also assume that, before executing Sy , f [i] is present in the
L1 cache. As a result, recomputing a[i], i.e., substituting a[i] with b[i] + c[i], can cause f [i] to be
evicted from the L1 cache due to a conlict miss. Therefore, although recomputation beneits a[i]
in the statement Sy , the potential reuse of f [i] in the L1 cache can be lost when recomputation is
used.

3.3 Overwriten Data

One other potential issue with recomputation is that the data that will be used for recomputing
the value for a costly data access should not be overwritten by the time we want to perform
recomputation. To illustrate an example scenario, we focus on Figure 2d. Let us assume that we
want to recompute a[i] in Sy using b[i] + c[i]. However, as can be observed, b[i] is modiied by
statement Sk , which is after Sx . As a result, we cannot substitute a[i] in Sy using b[i]+ c[i] as doing
so would use a wrong value of b[i] and consequently lead to a wrong execution result. Later in
Section 8, we discuss an automatic code transformation strategy to handle such cases.

3.4 Diferent Code Versions Employing Recomputation

A given code segment can be rewritten in multiple ways, each corresponding to a version that
exploits some subset of possible recomputation opportunities. Consider the code snippet shown
in Figure 4a, where both x[i] and y[i] in statement Sz can be substituted using Sx and Sy for
recomputation. Based on their data locations, one may choose only recomputing y[i] (Figure 4b),
recomputing both x[i] and y[i] (Figure 4c), or even not using recomputation at all (Figure 4a). As
one can observe, the total number of possible recomputation choices for Sz is 4. We refer to each
possible combination of recomputation (substitution) choices of all statements in a loop body as a
version. Given a loop nest with n statements, assuming that each statement i (1 ≤ i ≤ n) hasmi

possible substitution/recomputation choices, the total number of versions is
∏n

i=1mi .
The total number of possible recomputed versions can signiicantly increase if the code fragment

under consideration contains “recursivež computations. For example, consider the loop body shown
in Figure 5 where there exists a loop-carried reuse of a[i] (i.e., a[i] is reused across consecutive
loop iterations). Figure 5b illustrates the unrolled version with a stride of 4 iterations. As one can
see, each a[i + k] can be recomputed using a[i + k − 1]. Further, a[i + k − 1] can be recomputed
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for(i=0; i<n; i++)

…
a[i+1] = a[i] + const /** Sx */

…
endfor

(a)

for(i=0; i<n; i=i+4)

…
a[i+1] = a[i] + const /** Sx */

a[i+2] = a[i+1] + const /** Sx+1 */

a[i+3] = a[i+2] + const /** Sx +2*/

a[i+4] = a[i+3] + const /** Sx +3*/

…
endfor

(b)

Fig. 5. Example illustrating recomputation with recursive substitution.

using a[i + k − 2] and so forth, thereby exhibiting a recursive pattern. As a result, the number of
diferent versions increases exponentially, leading to a very large recomputation “search spacež.
However, the actual search space in practice is much smaller since many recomputation versions
are simply not legal, i.e., they change the semantics of the original program. Furthermore, as we
will discuss later in Section 7, most of the remaining versions can be quickly discarded using a
branch-and-bound based strategy during the search process.

4 CND VERSUS NDC
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Fig. 6. (a) Traditional computing vs (b) near data computing (NDC) vs (c) computing with near data (CND).

In this section, we contrast CND with NDC and explain the similarities and diferences between
the two. We chose NDC for this comparison, as it is a relatively recent paradigm and, like CND,
it also tries to reduce data access latencies and data movement costs. A conceptual comparison
of the traditional mode of computation, NDC, and CND is given in Figure 6, assuming that a
computation in the core shown originally wants to access data from far memory locations. In
this igure, (a) illustrates the traditional computing paradigm, where a computation scheduled
on a core that needs a data (say, with a long access latency) issues a request for it and the data
is returned, from its far memory location, to the requesting core. This traditional option can be
summarized as one in which we bring data to (the core that is to perform) computation. Clearly,
in this option, we incur the full cost of the long-latency data access. NDC is illustrated in (b); it
has several incarnations such as [18, 21, 24, 51], some of which will be further discussed in the
related work section (Section 10). NDC works by bringing computation to data (usually through
static scheduling), as opposed to bringing data to computation, which was the case in option in (a).
Consequently, the distance between computation and data gets reduced, which in turn reduces
data access latencies. In comparison, our proposed CND, illustrated in (c), eliminates the costly
data access altogether and replaces it with recomputation, which involves a number of accesses to
less costly data (in nearby memory locations) and some extra computation.
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It is important to note that, in CND, as opposed to NDC, computation itself is notmoved; instead,
it is performed in its original location, albeit diferently (i.e., via recomputation). As a result, CND
does not require any extra computation units/circuitry typically needed in most NDC proposals
(see Figure 6b). In fact, as we will show later in the paper, it is possible to reap a large fraction
of the potential beneits of CND with a little help from the compiler. We also believe that CND
can be expected to be more widely applicable than NDC. This is because, the additional hardware
(e.g., computation units and associated circuitry), required in the case of NDC, cannot be placed
into each and every chip location needed, as doing so would be extremely costly from both area
and inancial perspectives. As a result, a designer, based on her chip area and inancial constraints,
needs to favor some places (chip locations) over others, and this eventually leads to high data access
latencies when accessing data that reside in not-favored locations. A quantitative comparison of
CND against various NDC-based optimization strategies is later given in Section 9.

5 WORKLOADS AND EXPERIMENTAL METHODOLOGY

In this work, we evaluated CND using a set of single-threaded and multi-threaded workloads and a
state-of-the-art manycore system, Intel Knight’s Landing (KNL), described in detail in Section 2.
We used the “cache modež where the MCDRAM memory is used as an L3 (last-level cache).

Our single-threaded programs are from the loating-point suite of SPEC2006 [1] and our multi-
threaded benchmarks are from SPLASH-2 suite [66]. The dataset sizes of our single-threaded
benchmarks range between 4.1 GB and 17.3 GB, whereas those of our multi-threaded benchmarks
range between 6.6 GB and 16.2 GB. Further, the L1, L2 and L3 (MCDRAM) miss rates of these
benchmarks range, respectively, between 4.4%-39.1%, 3.1%-29.7%, and 1.9%-22.8%, indicating that,
as far as cache/memory pressure is concerned, our benchmarks exhibit a great diversity. When
performing experiments with a single-threaded application, we executed it on a randomly selected
core, and no other application is executed on any other core. On the other hand, when experimenting
with a multi-threaded application, we executed it on all cores available to us, in a one-thread-per-
core fashion. Each experiment has been repeated 20 times, and the results reported below represent
the average values.

Our compiler support, elaborated in Section 7, is implemented using LLVM [15], a state-of-the-art
compiler tool-chain, as a source-to-source translator. We used the latest version of the LLVM (6.0.0),
which includes the implementations of an extensive set of state-of-the-art code optimizations. The
resulting optimized C/Fortran codes are then compiled using icc (Intel’s compiler) with O3 lag,
which activates well-known optimizations targeting both parallelism (e.g., SIMD optimizations) and
data locality (e.g., loop permutation, iteration space tiling, and loop unrolling). In the presentation
of our experimental evaluation below, we also use a concept called location map. Location map
captures, at any given point in execution, the locations of all data elements. In the context of
this work, the potential locations for a data element are L1 cache, L2 cache, L3 cache (MCDRAM
conigured as L3), row-bufer, and main memory array (banks). It is to be noted that, for a given
data access request, any of these locations is accessed/checked only after all the previous locations
have been checked and the requested data could not be found in any of them (for example, L3 is
checked, only if the data request misses in both L1 and L2).
We irst present a qualitative and quantitative evaluation of CND and explain its limits (with

the help of an optimal scheme) in Section 6. We then present a practical scheme (Section 7) that,
while not bringing as much savings as the optimal scheme, improves performance signiicantly
over the traditional mode of execution. Then, in Section 8, we present and experimentally evaluate
an enhancement that improves the recomputability of a given program.
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for(i=0; i<n; i++)

d[i] = p[i] + q[i]

s[i] = u[i] + const

k[i] = s[i] * y[i]

t[i] = r[i] * x[i]

c[i] = k[i] + t[i] 

e[i] = g[i] + h[i]

b[i] = e[i] + f[i]

a[i] = b[i] + c[i] + d[i] /** Sk */

endfor

(a)

a[i] = b[i] + c[i] + d[i]

e[i] + f[i] k[i] + t[i] p[i] + q[i]

g[i] + h[i] s[i] * y[i] r[i] * x[i]

u[i] + const

Depth

(b)

Fig. 7. An example illustrating recomputation depth.

6 RECOMPUTABILITY AND POTENTIAL OF CND

6.1 Relevant Metrics

We start our technical discussion of recomputability and CND by giving a series of metrics that are
used in the remainder of this paper.

Deinition 6.1. Recomputability. We say a data access is recomputable if the original values of
all the variables needed to recompute it are still available (i.e., not overwritten); otherwise, it is
called unrecomputable. Recall that Figure 2a and Figure 2d give examples of the recomputable and
unrecomputable data accesses.

Deinition 6.2. Proitable Recomputability. A proitably recomputable data access is a recom-
putable data access (per Deinition 6.1) with the additional constraint that recomputing its value
(using the values of all the variables needed to recompute it) is less expensive (in terms of total
CPU cycles) than directly accessing it from its current storage location.

In mathematical terms, assuming that the value of x can be recomputed using the values of y1,
y2, y3, · · · , yn , an access to x is “proitably recomputablež if and only if:

cost(x) >

n∑

i=1

cost(yi ) + cost(⊕),

where cost(z) for a variable z refers to its access cost, and cost(⊕) represents the cumulative
cost incurred by additional arithmetic/logic operations required for recomputation. For example,
in statement Sy of Figure 2a, a[i] would be proitably recomputable if cost(a[i]) > cost(b[i]) +
cost(c[i]) + cost(+), where cost(+) is the cost of an addition operation.

Deinition 6.3. Beneit of Recomputation. Beneit of recomputing x using the values of y1, y2,
y3, · · · , yn , can be expressed as

cost(x) − (

n∑

i=1

cost(yi ) + cost(⊕)),

where the cost functions are as deined above.

Deinition 6.4. Recomputation Depth. The depth of recomputation is the maximum number
of successive substitutions made (for one of the variables need for recomputation) to recompute
the value.
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Consider, for example, the code fragment shown in Figure 7a. Figure 7b illustrates the concept of
recomputation depth. In this case, the recomputation depth is 3, which corresponds to the length of
the longest path. The depth of a recomputation is important, mainly because increasing the depth
can sometimes make an otherwise unproitable recomputation proitable. To be more concrete,
using current example in Figure 7, let us focus on recomputation of c[i] in Statement Sk . Suppose
that c[i], k[i], s[i] and t[i] are present in the of-chip main memory before the execution of Sk . Let
us further assume that u[i], r [i], x[i] and y[i] are present in the L1 cache. Obviously, recomputing
c[i] using k[i] + t[i] is not beneicial as it introduces one extra memory access. However, if we
further recompute k[i] using s[i] ∗ y[i] and recompute s[i] using u[i] + const , then we are able to
obtain performance beneits as u[i] is present in the L1 cache. Similarly, we recompute t[i] using
r [i] ∗ x[i]. As a result, statement Sk can be rewritten into:

a[i] = b[i] + (u[i] + const) ∗ y[i] + r [i] ∗ x[i]
︸                                   ︷︷                                   ︸

c[i]

+d[i],

where only L1 cache accesses and arithmetic operations are involved in recomputing c[i]. In this
particular example, the beneicial depth of recomputation of c[i] is 3.

Deinition 6.5. Location Map Summary (Distribution). For a given recomputation, the loca-
tion map summary gives the distributions of the locations of the variables involved.

Recall that data can be present in L1 cache, L2 cache, L3 cache (MCDRAM), row-bufer, and main

memory array (banks). As mentioned earlier in Section 5, a location map captures the location
information of all the live variables before each statement. Further, a location map can help
us identify which recomputations are proitable. Note that the location map can change after
recomputation substitution for each and every statement, as the corresponding data accesses can
change after substitution.

6.2 Algorithm for Generating All Recomputable Versions

We now give an algorithm that can be used to produce all recomputable versions of a given loop
nest. Our proposal contains a backward scan and a forward scan. The backward scan is responsible
for inding all the immediate substitutable choices for a particular variable, whereas the forward
scan is used to eliminate those substitutable choices which are not recomputable. Note that, for each
statement, we exhaustively generate all the recomputable versions without considering the location
map and cost at this stage. Note also that the recursive recomputation is naturally captured in our
algorithm, as the inal versions of a particular statement include all the combinations of diferent
versions of each variable involved. In other words, we only eliminate the non-recomputable versions
(e.g., Figure 2d) from the search space. As this algorithm applies a backward scan as well as a
forward scan on each variable, its asymptotic complexity is O(S2V ), where S is the total number of
statements in a loop nest, and V is the total number of variables in the loop nest.

6.3 uantifying Recomputability
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Fig. 8. Fraction of recomputable data accesses.
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Algorithm 1 Generate recomputable versions.

INPUT: A loop nest
OUTPUT: All recomputable versions
1: for each statement Si in the loop nest do
2: versionsSi ← �
3: /**backward scan*/
4: for each variable Vx in Si do
5: setVx ← setVx ∪Vx
6: Backward scan the nearest assignment of Vx and ind statement Sk
7: for Each version Pk in versionSk do

8: Forward scan from Sk to Si
9: if there exist an update to any variable in Sk then
10: Vx is not recomputable using Pk
11: else
12: setVx ← setVx ∪ Pk
13: end if
14: end for
15: end for
16: for all variables Vx · · ·Vy in Si do
17: from variable sets setVx to setVy
18: ind all combinations and add each combination is to versionsSi
19: end for
20: end for
21: Generate all the recomputable versions
22: for all the statements Si · · · Sj do
23: from versionsSi to versionsSj
24: ind all combinations where each combination is one output version of the loop nest.
25: end for

Having deined the important metrics related to recomputability and given an algorithm to
generate all (recomputation-based) versions of a loop nest, we next quantify recomputability of our
workloads using the target manycore. Figure 8 presents the fraction of recomputable data accesses
(whether proitable or not) for our 241 benchmark programs. It can be observed that, on average,
about 51.1% of all data accesses are recomputable. In each of the remaining data accesses, at least
one of the required variables (for recomputation) is not available (i.e., its original value is already
overwritten), making it unrecomputable. An example of this has already been given in Figure 2d,
and we will later discuss in Section 8 how to make some of these unrecomputable data accesses
recomputable.
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Fig. 9. The latencies (measured in CPU cycles) of diferent versions of the most time-consuming loop nest

from namd, normalized with respect to the "slowest version" (whose execution time is set to 100).

Let us now focus on one of our benchmark programs, namd (a nanoscale molecular dynamics
code), and explore it from a recomputability perspective in more detail. Figure 9 gives, for the most
time-consuming loop nest of this benchmark, the latencies (measured in CPU cycles) of diferent
versions (on the x-axis) of the loop body, normalized with respect to the "slowest version" (whose
execution time is set to 100). In this plot, the execution time of the default (original) version is
represented by the irst bar (version v1), and the last bar corresponds to the version (v180) with all

1In graphs that present results for all benchmarks, the irst 2 benchmarks on x-axis are single-threaded, whereas the

remaining are multi-threaded.
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Fig. 10. The distribution of the depths of recomputation values of versions v111 and v174.
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Fig. 11. The summary (distribution) of the location maps for versions v111 and v174.
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Fig. 12. The normalized execution times for the most time consuming loop nest from raytrace.

possible (legal) recomputations included. One can make the following observations from this graph.
First, a large number of the recomputable versions generate better results than the default (original)
version. Second, there is more than one version (3 in this case, to be more speciic) that generate
the best result. Third, the version with the most number of recomputations (corresponding to the
one with the highest depth, whose result is captured by the last bar) does not lead to the best result.
Together these observations mean that there is a great execution time variation (36%-100%) across
diferent versions, some versions achieve signiicant execution time reduction over the original
version (up to 58.6%), and there can be more than one version that generate the best improvement.

We now delve into more details focusing on two speciic versions from Figure 9: one generating
the best result (v174) and the other performing not so good (v111), and check their depth of
recomputation and location maps. Figure 10 gives, for these two versions (v111 and v174), the
distribution of the depths of recomputation values (note that each variable used in a given (original)
computation can have a diferent depth, as already explained in Section 6.1, and the results reported
in this igure are cumulative overall all variables in a version). We see that, although the maximum
depth value is 7 in both the versions, the distribution of depth values are diferent from one another.

Figure 11 on the other hand shows the summary (distribution) of the location maps for these two
versions. It can be observed from this igure that, most of the data accesses in v174 are satisied
from relatively fast storage locations (L1 and L2 caches to be speciic), and very few data accesses
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Fig. 13. The distribution of the depths of recomputation values of versions v89 and v238.
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Fig. 14. The summary (distribution) of the location maps for versions v89 and v238.
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Fig. 15. The location map summary for the original versions of the applications.

are satisied from row bufers (RB) and main memory (MM). In comparison, in the case of v111,
data accesses are distributed more widely over the possible locations, where 15.7% and 13.6% are
satisied, respectively, from row bufers and memory banks. These results help us explain why
version v174 performs much better than version v111. Figure 12 gives the execution times for
the most time consuming loop nest from another application program (raytrace, a multi-threaded
benchmark). Similar to Figure 9, the execution times of the diferent versions in Figure 12 also
difer widely from one another, and there are 5 versions that generate the best result (as before, all
results are normalized with respect to the "slowest version", and the irst bar corresponds to the
"original version"). Figures 13 and 14 give two diferent versions that employ recomputation (v89,
one of the best performing versions, andv238) the depth distribution and location map distribution,
respectively. And, again, these location map results help us understand the performance diference
between the two versions.
We now present the location maps for the three diferent versions of the entire applications.

Figure 15 gives the location map summary for the original versions of the applications. It can be
observed that, on average, about 34.3%, 23.3%, 21.4%, 6.6% and 14.4% of data requests are satisied
from L1, L2, L3 (MCDRAM), row bufers and main memory, respectively. As can be expected,
depending on the data locality they exhibit, diferent applications have quite diferent location

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 42. Publication date: January 2018.

Proc. ACM Measurement and Analysis of Computing Systems, Vol. 2, No. 3, Article 42. Publication date: December 2018.



42:14 X. Tang et al.

0

20

40

60

80

100

L
o

c
a
ti

o
n

 M
a
p

 
D

is
tr

ib
u

ti
o

n
 (

%
)

L1 L2 L3 RB MM

Fig. 16. The location map for the "best version" for each application.
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Fig. 17. The location maps for the most aggressively recomputed versions of all applications.
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Fig. 18. The normalized execution time of the best version of each application program (lower, beter).

maps. Figure 16 gives the location map for the "best version" for each application. For a given
application, the best version is the one that employs the "best performing version" for each loop
nest.2 Comparing the results in Figures 15 and 16 clearly indicates that, the applications in the
latter exhibit much better locality than the corresponding applications in Figure 15. In fact, in this
case, 90.5% of total data requests are satisied from either L1 or L2 or L3. For comparison purposes,
we also present, in Figure 17, the location maps for the “most aggressively recomputedž versions
of our applications, that is, the versions where each (legal) recomputation opportunity has been
taken. It can be observed that, such aggressive recomputation does not generate good locality for a
large majority of our application programs.
Finally, the irst bar in Figure 18 plots the execution time of the best version (as deined above)

of each application program tested. For each application, the execution time is normalized with
respect to the execution time of the "original version" of that application (the latter is set to 100).
Note that these results represent the beneit of recomputation. We see that, as can be expected,
using the best recomputation option for each application generates the best overall execution time.
In the same graph, the second bar for each application gives the result of the most aggressively
recomputed version (whose location map is given in Figure 17). As can be observed, using aggressive
recomputation can lead to disastrous results for many benchmarks.

While the results presented in Figure 18 for the best performing versions are very encouraging
and clearly demonstrate the potential of recomputation (as an alternative to directly performing

2While the inter-nest data reuse can also play a role here, its contribution to the overall reuse is much lower compared to

intra-nest data reuse.
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costly/remote data accesses), recall that these results have been obtained via "exhaustive search"
(i.e., for each loop nest in each application, the best performing version is identiied and used).
Clearly, such an approach would not be viable in a practical setting. Encouraged by the results
in Figure 18 however, in the next section, we propose and experimentally evaluate a practical
(compiler-based) approach that can take advantage of inherent recomputability exhibited by our
single-threaded and multi-threaded application programs.

7 A PRACTICAL APPROACH TO EXPLOITING RECOMPUTABILITY

This section presents a compiler-driven strategy to take advantage of recomputability. More specii-
cally, we present a compiler algorithm that transforms a given input code to an optimized version
that carefully employs recomputation. In doing so, our algorithm tries to balance the opportunities
enabled by recomputation and the opportunities revealed data reuse, with the goal of approaching
the maximum improvements presented in the previous section.

7.1 Compiler Algorithm

At a high level, our algorithm scans the entire search space of code versions (for a given code
fragment to optimize) and prunes that space using CME (explained below), which estimates the
number of cache misses for each version. Among all the versions scanned, our approach selects the
one with the “minimum costž, i.e., the minimum number of cache misses. As a result, any potential
negative performance impact of our approach is taken into account.

For a given loop nest, we irst partition the loop nest into n sub-loops. A sub-loop is a portion of
loop iterations of a given loop nest. The reason we partition a loop nest into sub-loops is because
diferent loop iterations might have diferent proitable recomputation versions. For example in
Figure 19a, the entire loop nest with N iterations is partitioned in to n sub-loops. Each sub-loop
has N /n iterations. The code snippet in Figure 19a gives the kth sub-loop. Note that, in an extreme
scenario, it is possible that each loop iteration has a particular proitable recomputation version and
there is no common proitable version between any two iterations. To capture such scenarios, one
needs to unroll the entire loop and perform recomputation analysis on each iteration separately,
which can incur signiicant space and compilation time overheads. On the other hand, one can
choose to generate a single (common) version (based on the output of Algorithm 1) for all iterations
of the loop nest. Although, in the latter case, the overheads would be less, that option may not
be able to take full advantage of recomputation. To strike a balance between the overheads and
recomputation beneits, we partition the loop nest into n sub-loops. The partitioning (unrolling)
factor n is an input to Algorithm 2 along with the target loop nest. A larger value of n indicates a
iner granular application of our approach. The corresponding costs, both in terms of code analysis
and code generation, are also high when using a larger value for n. Later, we provide experimental
results with diferent values for n. However, independent of the choice of n, our algorithm merges
all sub-loops (line 26 in Algorithm 2) if they prefer the same proitable version after applying the
version identiication and dependences allow such a merge. As a result, all the sub-loops with
the same proitable version generate the optimized code only once, efectively reducing the code
generation overheads.
For each sub-loop, we apply cache miss equations (CME) [23] to predict whether a particular

reference hits in the cache or not. Speciically, CME iterates over loop statements in a sub-loop one
by one. For each reuse vector3 originating from each data reference in a statement, CME generates

3Reuse vectors capture the repeated memory access patterns in loop-based code segments [64]. Speciically, given two loop

iterations ®i and ®j , where ®i , ®j and ®i is executed before ®j . If a memory address is accessed by both iterations, the reuse

vector is ®r = ®i − ®j .
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Algorithm 2 Identifying the most proitable recomputation based version of a given input loop
nest. Note that this algorithm is invoked for each loop nest of an application separately.

INPUT: A loop nest L, A partition factor n
OUTPUT: Most proitable version
1: /**Step 0: call Algorithm 1 and get all versions*/
2: all_versions← generate_recomputable_versions(L)
3: min_cost←∞
4: /** Step 1: participation the loop nest into n sub-loops */
5: sub-loops← partition (L, n)
6: /** Step 2: ind the proitable version of a sub-loop */
7: for each sub-loop do
8: for each version Vk in all_versions of a sub-loop do
9: costVk ← 0

10: /**call cache miss equations on Vk */
11: for each statement Si in Vk do
12: for each reuse vector of each reference in Si do
13: build and solve cache miss equations
14: costVk += costSi
15: if costVk > min_cost then

16: /** partial cost larger than previous versions,
17: abandon this version and move to next*/
18: goto line 8
19: end if
20: end for
21: end for
22: min_cost← costVk
23: end for
24: end for
25: /** Step 3: merge sub-loops with same proitable version */
26: merge(sub-loops)

several linear Diophantine equations and predicts the hit/miss status of the data reference based
on the solutions of the Diophantine equations. We integrate our proitable version identiication
algorithm with the CME process. The pseudo-code for our compiler algorithm is provided in
Algorithm 2. We irst generate all the versions using Algorithm 1, and partition the loop nest to be
optimized into sub-loops. We then apply CME analysis to each version of each sub-loop. During
the CME process of a sub-loop, for each statement, we log the cost after CME provides the hit/miss
status. If the total cost is greater than the minimum cost across all the previously-searched versions,
we stop further exploring this current version and move to the next version (lines 15 to 18). This
is due to the fact that the cost of statements in a version of a given sub-loop body monotonically
increases as its statements are being processed. This particular characteristic allows us apply the
branch and bound concept to signiicantly reduce the search space and associated search overheads.

The complexity of our compiler algorithm is O(SVR), where S is the total number of statements
in the loop nest, V is the total number of variables in the loop nest, and R is the total number of
versions of all sub-loops. We observed that, for our benchmark programs, our approach increased
compilation time between 5% and 55%, over the compilation of the original codes without our
optimization.

To better explain Algorithm 2, let us consider the example shown in Figure 19. Figure 19a shows
the code of a sub-loop where a[i] is modiied in statement Sx and reused in statements Sy and Sz . As
one can see, a[i] in both Sy and Sz can be recomputed using Sx , resulting in a total of four versions.
Figure 19b shows all four versions of the code, where each path along the arrow constitutes one
version of the sub-loop. Note that, version 1 and version 2 share the same path between Sx and
Sy , indicating that they have the same versions for Sx and Sy but diferent versions for statement
Sz . Algorithm 2 irst generates all four versions (using Algorithm 1) and then applies CME analysis
to each version separately. To be more concrete, let us assume that applying CME to version 1

gives us the cost of 2L2 + 4L1 + 3⊕. We next apply CME to version 2 , and the resulting cost is
4L2 + 3L1 + 4⊕, due to b[i] and c[i] being present in the L2 cache. As a result, version 1 has a
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for(i=kN/n; i<k+N/n; i++)

…
a[i] = b[i] + c[i] /** Sx */

d[i] = a[i] + e[i] /** Sy*/

f[i] = a[i] + g[i] /** Sz*/

…
endfor

(a)

a[i] = b[i] + c[i]

d[i] = a[i] + e[i] d[i] = b[i] + c[i] + e[i]

f[i] = a[i] + g[i] 

f[i] = b[i] + c[i] + g[i] 

f[i] = a[i] + g[i] 

f[i] = b[i] + c[i] + g[i] 

1

1

2

2

43

3

4

(b)

Fig. 19. Branch and bound employed for identifying profitable versions.

lower cost and we temporally choose version 1 as our preferred version. We next move to explore
version 3 . When CME processes statement Sy in version 3 , the cost after processing Sy ends up
being 4L2 + L1 + 3⊕, which is already larger than that of version 1 . Therefore, we do not need to
further process the branches of versions 3 and 4 (annotated using a shaded box in Figure 19b). In
other words, we “prunež the search for the versions whose intermediate costs are already larger
compared to the version with the current minimum cost (i.e., most proitable version).

Let us further elaborate on the role CME plays in our approach. At a high level, considering (one
by one) the reuse vectors representing the diference (in vector form) between the iterations that
reuse data in a lexicographically increasing order, CME determines for each reuse vector the “hitsž
and “missesž it incurs. More speciically, starting with the most conservative estimate (all accesses
are misses), it uses reuse vectors one by one to identify the hits (due to reuses) and reduces the set
of misses. Consider, as an example, the simple code fragment below:

for(i = 2; i <= N ; i + +) b[i] = a[i] + a[i − 1] endfor

In this case, each reference has spatial reuse and in addition a[i] and a[i − 1] have temporal
reuse between them (i.e., a data element accessed by the former at iteration i = k is accessed by
the latter in iteration i = k + 1). Conservatively, we can start by assuming 3(N − 1) misses as we
have 3 references accessed in a total of (N − 1) iterations. However, CME realizes that, given a
cache line size of L, b[i] will miss only once per cache line resulting a total of (N − 1)/L misses
(instead of our conservative estimation, (N − 1)). A similar argument goes for a[i] as well, resulting
only in (N − 1)/L additional misses. Finally, a[i − 1] will "reuse" (in the current iteration) any data
brought to the cache by a[i] in the previous iteration, incurring potentially only one additional
miss (when accessing a[0]). As a result, CME would estimate the total number of misses in this
case as {2(N − 1)/L} + 1, a much lower value than our conservative bound (3(N − 1)).

Note that, in a compiler implementation, the reuse opportunities mentioned above are represented
as reuse vectors and the cache misses are represented as Diophantine equations. While in the most
general case inding solutions to Diophantine equations can be costly, there exist many techniques
for manipulating them (see [23] for a discussion on that) and such techniques allow us reduce the
complexity and/or number of possible solutions signiicantly in most practical cases.

Note that CME cannot be fully accurate as it (i) conservatively assumes that any reuse that that
cannot be fully analyzed statically (e.g., due to indexed-array subscripts or pointer accesses) will
not cause any reduction in the number of misses and (ii) has limitations in capturing the conlict
and coherence misses, especially in caches shared by multiple cores. As a result, its accuracy (in
predicting hits and misses) is less than 100%. Consider for example the code fragment below:

for(i = 2; i <= N ; i + +) c[i] = d[f [i]] + a[i] ∗ b[i] endfor

As an example of the reason (i) for inaccuracy mentioned above, we have an indirect array access:
d[f [i]], that is, the result of array access f [i] is used to index another array (d). In most of the cases
where such accesses appear, contents of f are not know until runtime. As a result, while CME
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will be able to estimate the misses for f [i] (as i itself is compile-time analyzable), it will not be
able to estimate the misses for d[f [i]] (as f [i] is not compile-time analyzable). Now, we turn our
attention to an example for reason (ii) mentioned above as a potential source of inaccuracy. In the
code fragment shown above, while one would expect the misses that would be incurred by a[i] and
b[i] to be easily estimatable, it is possible that accesses via these two references can either fully or
partially conlict in cache (for example, b[i] can displace a[i] from the cache, thereby destroying the
potential spatial reuse of the other elements that reside in the same cache line as a[i] and would be
accessed soon).4 While our compiler also uses array padding [52] to minimize the possibility of
conlict misses as much as possible, it is still possible that some hard-to-predict conlict misses will
escape our analysis.
Finally, it also needs to be emphasized that the only role CME play in our framework is to

“estimatež the number of cache misses for a given version, and if desired, CME can be replaced with
any other cache miss estimation strategy.

7.2 Interaction with Spatial Reuse

The interaction of our approach with spatial reuse demands further discussion. In particular, recall
that, when we decide to recompute the value of a data element a in a statement, we do not access it
from its original location (we instead access the elements that are needed to recompute its value).
However, doing so also raises a concern regarding spatial reuse. More speciically, the data elements
that reside in the same cache line/memory block as a are not accessed either. And, it is possible
that such elements would be used (when they are brought into L1, for example) in the following
computations. As a result, theoretically speaking, recomputing a can lead to some loss in data
locality originating from spatial reuses. This can be problematic, particularly in pure streaming
applications, and as a result, we expect our approach not to be the best optimization strategy for
such applications.

However, we also want to emphasize that, our approach explained above is built upon the high
level idea of generating diferent versions of the code fragment being optimized and pruning them
based on the feedback from the cache miss equations (CME). As a result, any “lossž in spatial
locality incurred as a result of applying recomputation will be caught by CME (i.e., we will observe
increased misses) and the code versions that lead to excessive losses in locality will be automatically
discarded by our approach. It also needs to be mentioned that all the results presented below for
our compiler approach already include all impacts (both positive and negative) of recomputation.

7.3 Results

We now experimentally analyze the behavior of this compiler-based approach, and compare its
results to the best results (presented earlier in Section 6). Clearly, since the results presented
earlier in the irst bar in Figure 18 are obtained after evaluating all possible versions for all loop
nests in our application programs, the compiler-determined version for a given loop nest must
deinitely be among them. The important question is then whether, for a given loop nest, the
compiler-determined version and the best version detected via exhaustive search are the same, and
if not, how close they are to each other. In the experiments below, unless stated otherwise, the n
value is 10, that is, each loop nest is divided into 10 sub-loop nests. Later, in a separate experiment,
we vary the value of n and perform a sensitivity study.

For each application, the third bar in Figure 18 gives the normalized execution time for the
compiler-optimized version. It can be seen that, the compiler version generates performance im-
provements, ranging between 0.9% and 66.9%, averaging on 36.9%. To better explain these results, we

4In fact, in the worst case, all of the accesses to a[i] and b[i] can result in misses, as a result of the ping-pong efect in cache.
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Fig. 20. The error of the compiler based approach experiences in identifying the best version of a loop nest.

give in Figure 20 the errors the compiler based approach experiences in identifying the best version
of a loop nest in a given application program. More speciically, in this plot, for an application, the
portion marked using "0%" represents the fraction of loop nests for which the compiler identiied
version and the (experimentally) best version are exactly the same ś the compiler identiies the
best version with 100% accuracy (i.e., 0% error). On the other hand, "x% < error ≤ y%" captures the
fraction of cases (loop nests) where the compiler-generated version is not the same as the actual
best version, and the performance diference between them is greater than x% and less than (or
equal to) y%. Finally, "error > 20%" represents the fraction of the cases where the compiler version
is more than 20% worse (performance-wise) than the optimal (ideal) version. As can be seen from
the last bar, on an average, our compiler analysis catches the best version (of a loop nest) in 67.6% of
the cases. And, in 79.3% of the cases, the diference between the compiler version and best version
is less than or equal to 2%, indicating that, overall, the compiler is quite successful in identifying
the most proitable recomputation opportunities automatically.

Let us now discuss why our compiler approach identiies the best version(s) in some benchmarks
quite well, while it is relatively less successful in some other benchmarks. It is important to re-
emphasize that our compiler approach mainly relies on CME to identify the inal code version to
use. Consequently, in cases (loop nests) where our compiler approach is not very successful, the
main reason is the inaccuracy in cache miss estimation. We present in Table 2 the CME accuracies
for our benchmark programs. It can be observed that the CME accuracy values vary signiicantly
across the benchmarks, being as high as 93.3% in namd and as low as 69.8% in deall.
To better understand why CME generates diferent accuracies for diferent benchmarks, we

performed another set of experiments. Speciically, for each benchmark in our experimental suite,
we checked whether the hit/miss estimation made by the compiler matched the reality, that is,
whether the compiler correctly guessed whether a given access would be a hit or a miss. After
recording this information, we went over the accesses for which we have misprediction and mapped
them to the static data accesses in the code. Also, for the references CME predicted hit but they
turned out to be miss in reality, we also recorded the type of the miss (cold, capacity, conlict
and coherence). We then tried to identify the reason why such a data access might have been
mispredicted.

Recall that we discussed twomain reasons in Section 7.1 as potential sources of inaccuracy inmiss
estimation. Hence, we divided our mispredicted data accesses into three categories: (i) misprediction
do to the diiculty in compile-time analyzability of a data reference (e.g., an indexed array access
such as c[f [i]], or a pointer-based access such as ∗д where д is a pointer); (ii) misprediction due to
potential conlict or coherence misses; and (iii) some other reason we could not igure out. In the
last category are the mispredictions that we could not identify any particular reason why CME
mispredicted. The breakdown of CME mispredictions (errors) into these three broad categories is
given in Figure 21.
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Table 2. Cache miss estimation accuracies.

cactusAMD 74.5% deall 69.8% gemsFDTD 83.4% sphinx3 85.6% wrf 79.4%
lbm 87% calculix 80.6% povray 92.2% soplex 89.1% namd 93.3%
leslie 91.7% gromacs 92% barnes 85.5% cholesky 83.3% ft 76.3%
fmm 90.8% lu 86% ocean 83.5% radiosity 91.5% radix 84.1%
raytrace 85.8% volrend 90.6% water 92.4% objtrack 93.1%
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Fig. 22. Sensitivity of savings to the value of n.

It can be observed from this plot that, on average, the contributions of reasons (i), (ii) and (iii) to
inaccuracy (mispredictions) are 48.1%, 46.3% and 5.6%, respectively. More speciically, not being
able to fully analyze a reference (data access) in the program is the primary reason why the overall
error the compiler generates in identifying the best version is relatively high in benchmarks such
as wrf, cactusAMD and deall. In comparison, it seems that benchmarks such as calculix, cholesky,
lu, and ft sufer largely from inaccuracies stemming from conlict and coherence misses. The last
bar in Figure 21 gives the contribution of the such problematic references (data accesses that fall
into (i), (ii) and (iii)) to the total number of references, and we see that, in most of the benchmarks,
this value is less than 15% (averaging on 13.7%).
Recall from Section 5 that, in executing our multi-threaded applications, we executed one

application at a time in all cores (i.e., one thread per core). Since our recomputation-based approach
can replace, in general, a given costly data access with multiple (less costly) data accesses, it can
potentially increase the traic on the on-chip network. While unfortunately we do not have a direct
way of measuring this overhead accurately on Intel KNL, we do not expect it to be a major issue,
due to the high bandwidth provided by the on-chip network. In any case, this potential impact
on on-chip network (like all other overheads our approach could bring) is already included in the
experimental results presented earlier in Figure 18.
We now study the sensitivity of our savings to the value of n. The results are presented in

Figure 22 for n values ranging between 2 and 100 (recall that the default value used so far in our
experiments is 10). It can be observed that, beyond a certain value of n, the improvements achieved
do not change much. This value, while application dependent is generally between 10 and 20. The
reason for this behavior, is that, beyond a certain level of unrolling, there is not much additional
recomputation opportunity left. To show how some recomputation opportunities may disappear
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as n is increased, let us consider the following sample loop nest that iterates only 4 times (for
illustrative purposes):
for(i = 2; i <= 5; i + +)
a[i] = b[i] + c[i]
... = a[i − 1] + ...
... = a[i − 2] + ...

endfor
Let us irst assume that n is 2. In this case (after unrolling), the program statements assigned to

the irst sub-loop are as follows:
a[2] = b[2] + c[2]
... = a[1] + ...
... = a[0] + ...
a[3] = b[3] + c[3]
... = a[2] + ...
... = a[1] + ...

It is to be observed that a[2] in the ifth statement above presents a potential recomputation
opportunity as can be replaced, if it is beneicial to do so, by b[2] + c[2] from the irst program
statement. Similarly, the program statements assigned to the second sub-loop are as follows:
a[4] = b[4] + c[4]
... = a[3] + ...
... = a[2] + ...
a[5] = b[5] + c[5]
... = a[4] + ...
... = a[3] + ...

Similar to the previous sub-loop, here we have a potential recomputation opportunity for a[4],
i.e., it can be replaced by b[4] + c[4].

Let us now increase n from 2 to 4. In this case the irst sub-loop will have the following statements:
a[2] = b[2] + c[2]
... = a[1] + ...
... = a[0] + ...

Unfortunately, this version does not present any recomputation opportunity, and the program
statements assigned to other sub-loops also do not present any recomputation opportunities. In
general, beyond a certain value of n, there may not be additional recomputation opportunities.
Overall, while the results in Figure 22 suggest using large n values (increased unrolling) as

already stated, doing so increases both the code size and compilation time. For example, moving
from 10 to 100, increased the code size by around 7x and compilation time by around 1.7x. Based
on these results, we recommend using large n values if neither compilation time nor code size is a
prime concern.

Now, we focus on four of our applications (lbm, calculix, barnes, and cholesky) where we could
conidently change the input size, and measure how the compiler-based approach performs as
the dataset sizes increase. The results plotted in Figure 235 indicate that the efectiveness of our
compiler based approach signiicantly increases as the dataset sizes increase. This is mainly because,

5On x-axis of this plot, as we go from one point to another, the input size is nearly doubled. Note also that, each result in

this graph is normalized to the original version with the corresponding input size.
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with larger dataset sizes, the application makes more costly data accesses which increases the
opportunities for employing recomputation.
We also performed experiments with multiple applications running at the same time. More

speciically, from our benchmark programs, we formed diferent workloads, each having 4 applica-
tions. Each application is assigned to 9 nodes of our 36 node manycore system. We irst executed
the workload without our recomputation optimization, and then with our optimization. We then
calculated the geometric mean of the speedups of the four applications, with respect to the irst exe-
cution. The results (geometric mean of individual application speedups) are plotted in Figure 24 for
8 diferent workloads. It can be observed that, our approach brings improvements ranging between
1.55 and 2.82, that is, it is also efective in execution environments that run multiprogrammed
workloads of multithreaded applications.

8 IMPROVING RECOMPUTATION OPPORTUNITIES

So far in our discussion we focused on the original application programs and performed two types
of studies: one measuring the recomputability potential of the programs and one that proposes a
practical (compiler-based) scheme to take advantage of recomputability. In this section, we take a
diferent approach and explore whether it is possible to modify the application programs to improve

their recomputability.
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Algorithm 3 Improve recomputability.

INPUT: A loop nest L
OUTPUT: Loop nest with improved recomputability.
1: for each statement Si in L do
2: versionsSi ← �
3: /** backward scan */
4: for each variable Vx in Si do
5: setVx ← Vx
6: Backward scan the nearest assignment of Vx and ind statement Sk
7: for Each version Pk in versionSk do

8: Forward scan from Sk to Si
9: if there exist a statement Sj updates variable Vy in Sk then
10: insert statement Vtemp ← Vy before Sj

11: P
′

k
← replace Vy in Pk using Vtemp

12: setvx ∪ P
′

k
13: end if
14: end for
15: end for
16: for all variables Vx · · ·Vy in Si do
17: from variable sets setvx to setvy
18: ind and add all combinations to versionsSi
19: end for
20: end for
21: Generate all the recomputable versions
22: for all the statements Si · · · Sj do
23: from versionsSi to versionsSj
24: ind all combinations where each combination is one output version of the loop nest.
25: end for

for(i=0; i<n; i++)

…
a[i] = d[i] … /** Sx */

b[i] = d[i] … /** Sy*/

c[i] = d[i] … /** Sz*/

…
d[i] = 3*x[i] /** Sk*/

… 
e[i] = a[i] + b[i]

f[i] = c[i] * const

…
endfor

(a)

for(i=0; i<n; i++)

…
a[i] = d[i] … /** Sx */

b[i] = d[i] … /** Sy*/

c[i] = d[i] … /** Sz*/

…
dtemp[i] = d[i] /** Sw*/

d[i] = 3*x[i] /** Sk*/

… 
e[i] = a[i] + b[i] 

f[i] = c[i] * const

…
endfor

(b)

Fig. 25. Improving recomputability using variable storage/duplication.

8.1 Motivation and Algorithm

Clearly, improving recomputability metric is one of the possible approaches that can improve
performance based on the concept of recomputability. Another approach would be, for example,
identifying critical variables (i.e., variables that can signiicantly contribute to the recomputation of
many costly data accesses) and pinning them in the irst layers of cache (L1 and L2). Instead, in this
paper, we focus on code level modiications to improve chances for recomputation, and postpone
the cache pinning idea to a future work.

Recall that Figure 8 gives recomputability for our benchmark programs. Our goal in this section
is to improve these numbers by ensuring that “critical valuesž are stored long enough until all
the recomputations that need them are completed. In this context, a critical value is a value that
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Fig. 26. The increased fraction of data accesses that are recomputable in the optimized applications.

would contribute to the recomputation of several other values. Let us consider as an example the
code fragment shown in Figure 25. In this code fragment (taken from one of our benchmarks),
we cannot recompute the values of a[i], b[i] or c[i] simply, because one of the values needed for
recomputation (d[i]) has been overwritten. Our solution is to store the value of d[i] in a temporary
location before it is overwritten and use that value later (when needed) for the recomputations
of a[i], b[i] and c[i]. We want to emphasize that, for this optimization to be successful, there are
two conditions: i) copy should be done before the variable being overwritten, and ii) overwritten
variable should have some reuse in successive statements.

Algorithm 3 gives the pseudo-code for our compiler algorithm that improves recomputability
using variable duplication.6 The overall process is similar to Algorithm 1 and it also consists of a
backward scan and a forward scan. The fundamental diference between Algorithm 3 and Algorithm
1 is that, if there is an update to a critical variable, Algorithm 3 tries to insert a copy of an originally
unrecomputable variable (lines 9 to 12), instead of simply abandoning the recomputation which is
the decision made in Algorithm 1. In other words, by storing the variables, this approach increases
the number of possible recomputation versions, thereby improving the value of the recomputability
metric. It is important to emphasize that, Algorithm 3 only improves recomputability and does
not guarantee the additional recomputation based versions are indeed proitable. It is possible that
the additional versions obtained from Algorithm 3 are costlier due to diferent location maps as
well as overheads of extra statements added. All the versions generated from Algorithm 3 and
Algorithm 1 are input to Algorithm 2, and Algorithm 2 automatically identiies the most proitable
recomputation version (i.e., the version with minimum cost).

8.2 Results

We implemented this optimization in our compiler and evaluated its impact on recomputability and
performance for our benchmark programs.7 The results given as the last bar for each benchmark in
Figure 18 indicate that, this optimization improves performance by 40.1% on average, and as much
as 67.4% and 65.8% in benchmarks soplex and calculix. To explain these results better, we present
in Figure 26 the fraction of data accesses that were unrecomputable in the original applications
but are now recomputable in the optimized applications. It can be seen from these results that
our optimization approach eliminates 19.7% of the unrecomputable references in the original
applications, which is why it generates further improvements over the compiler support presented
in Section 7.

9 EMPIRICAL COMPARISON AGAINST NDC

In this section, we present a quantitative comparison of our CND against NDC (recall that a
qualitative comparison is given in Section 4). Since NDC cannot be mimicked in a real hardware,
we pursued a simulation-based study instead. More speciically, using gem5 [14], we modeled an

6The asymptotic complexity of this algorithm is O (S2V ), which is the same as Algorithm 1.
7We want to make it clear that this enhancement is applied before our compiler approach discussed in Section 7. In other

words, the scheme evaluated in this section also makes use of the compiler approach discussed earlier.
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Fig. 27. The normalized execution times of our applications with four diferent schemes: NDC (mem-only),

NDC (mem+MC), NDC (mem+MC+cache), and our CND (with n=10).
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Fig. 28. The opportunities caught by three diferent NDC-based schemes.

architecture, which is very similar to Intel KNL. gem5 is a highly conigurable simulation framework,
which supports multiple ISAs, a large set of CPU models, a detailed cache/memory subsystem,
including support for various types of cache coherence protocols and on-chip interconnects.
Clearly, there exist many diferent approaches to NDC in the literature. In this work however,

we implemented three diferent NDC approaches with increasing strengths. The irst of these,
called “NDC (mem-only)ž, performs an arithmetic or logic computation in a memory bank if the
most updated values of all the operands required by the computation already reside in that bank.
The second approach, referred to as called “NDC (mem+MC)ž, includes NDC (mem-only), but in
addition it also performs an arithmetic or logic computation in a memory controller (MC) if all the
involved operands reside in the banks controlled by that MC. In the third approach, called “NDC
(mem+MC+cache)ž, we also capture the cases (opportunities) where all the required operands are
in the same L2 or they are all in the same L3 (in addition to those opportunities caught by NDC
(mem+MC)). Here, the diference between NDC (mem-only) and NDC (mem+MC) should be noted.
If two operands are needed for an operation, reside in two diferent banks controlled by the same

memory controller, the latter scheme would take advantage of that, whereas the former scheme
could not.
We want to emphasize three critical points. First, our evaluation of these schemes does not

include any overheads. In reality, performing computations in memory banks, memory controllers
and (L2/L3) caches would involve some extra latency; so, the results reported below overestimate
the beneits of NDC. Second, we assume that all types of arithmetic and logic operations can be
performed in an NDC-manner. Again, in reality, one would restrict the types of operations. Third,
modifying hardware to include units to perform computations (e.g., enhancing an MC with an
ALU) can have signiicant area costs as well, which is in fact one of the factors that limit the
widespread adoption of the NDC technology, in our opinion. In a sense, the results from these
three NDC schemes described above represent the “upper boundsž that can be achieved by an ideal

implementation and execution scenario.
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Figure 27 plots the execution times of our application programs with four diferent schemes:
NDC (mem-only), NDC (mem+MC), NDC (mem+MC+cache), and our CND (with n=10).8 These
execution times represent normalized values with respect to the original application codes. Clearly,
as the strength of an NDC mechanism increased, i.e., as we move from NDC (mem-only) to NDC
(mem+MC) to NDC (mem+MC+cache), the improvements achieved also increase. More speciically,
compared to the original executions, NDC (mem-only), NDC (mem+MC), NDC (mem+MC+cache)
bring average execution time improvements of 8.7%, 24.4% and 31.5%, respectively.9 More impor-
tantly, even these ideal NDC implementations cannot outperform our CND, primarily because
our approach catches more opportunities to reduce data movement costs.10 To elaborate more on
this last point, we present in Figure 28 the opportunities caught by the three NDC based schemes
explained above. More speciically, the y-axis in this igure represents the fraction of arithmetic or
logic operations that could be performed near data (in a memory bank, memory controller or cache,
depending on the speciic scheme in question). We see that, on average, only 10.4%, 27.9% and 37.9%
of all operations could be performed near data, when using, respectively, NDC (mem-only), NDC
(mem+MC), NDC (mem+MC+cache). This result helps us explain the not-so-good execution time
results of these three schemes plotted in Figure 27.

10 DISCUSSION OF RELATEDWORK

In this section, we discuss the prior research eforts that focus on reducing data access andmovement
latencies. We classify the relevant research works into three broad categories: i) data locality
optimizations, ii) near data computing (NDC) based studies, and iii) works related to recomputation.
Data Locality Optimizations:Optimizing data accesses has generated in the past a lot of diferent
optimization strategies, butmost of these strategies employ either code (access pattern) restructuring
[11, 17, 26, 32, 34, 35, 41, 56, 62, 63, 65], data layout reorganization [20, 22, 31, 39, 45, 49], or a
combination of both. CND is clearly diferent from these past approaches as it employs an entirely
diferent strategy based on the concept of recomputation. However, it can co-exist with such data
access optimization schemes, or can be integrated with them, if desired.
Near Data Computing Based Optimizations: The concept of NDC is not new and can be
traced back to 1970s [24, 57]. NDC organizes execution diferently from the traditional approaches
mentioned in the previous paragraph. More speciically, it brings computation to data, instead of the
other way around. Recently, due to emerging new technologies such as 3D-stacked memory [44]
and hybrid memory cube [30], NDC has become more popular, and now there exist a large number
of proposals aimed at exploiting NDC in various ways [7ś9, 12, 18, 29, 42, 48, 68]. Ahn et al. [8]
proposed a processing-in-memory architecture where data locality is considered while executing
PIM instructions. Pattnaik et al. [50] proposed a computation oloading model on GPUs where the
GPUs include PIM cores. Hsieh et al. [29] proposed a scheme to dynamically oload beneicial code
segments to PIMs without involving programmer eforts. Xu et al. [67] used PIM architectures to
improve the execution of deep learning algorithms. As discussed in Section 4 and quantiied in
Section 9, CND is more practical than NDC, and generates better results in general.

8Note that, for this comparison, we use the CND version without our enhancement discussed in Section 8. We chose the

version that does not use our enhancement, because, in principle, one can also imagine compiler techniques that can enhance

the efectiveness of NDC, though this itself is a new research direction.
9Note that this is partly because our implementations of these three schemes do not assume any latency overhead due to i)

the added hardware units or ii) the time it takes to determine that all of the required operands are indeed locally available.

If these overheads are added, the relative ranking of these three schemes can potentially change.
10Note that the savings reported in this graph for CND are diferent from those reported earlier in Figure 18, as those results

were from the KNL system and these results are from the gem5 simulation.
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Works Related to Recomputation:We now discuss two prior works related to recomputation.
Akturk and Karpuzcu [10] investigated the efectiveness of recomputing data values in minimizing
the energy overhead of expensive of-chip memory accesses. Based on their observations, they
proposed an architecture-supported recomputation strategy called amnesic. Our approach is difer-
ent compared to their approach from two main aspects. First, their approach is simulation based
and requires extra hardware support such as recomputation registers and additional bufers. In
contrast, our proposed CND is a pure software approach and is evaluated on a real manycore system
(KNL). Second, our proposed enhancement (Section 8) can further improve the recomputability in
applications, thereby improving the beneits one can achieve from recomputation. Another related
work to recomputation is [6]. Targeting cloud platforms, the authors observed that storing a result
and regenerating a result is not simply a cost-beneit tradeof. It is also related to information
security, data feasibility, etc, due to the unique characteristics of cloud platforms. To this end, the
authors gave a detailed analysis of recomputation in cloud platforms. Our approach in this paper
focuses on manycore systems and our primary target is workload performance.

11 CONCLUSIONS AND FUTUREWORK

This work makes four main contributions. First, targeting emerging manycore systems, it proposes
a novel computation paradigm called CND (which is based on recomputing the values of costly
data elements), and quantiies its potential using a diverse set of sequential and parallel application
programs. Second, it presents a practical compiler-driven strategy to take advantage of CND. Third,
it proposes a strategy to increase the chances for employing CND. And inally, it compares CND
with another recent paradigm, near data computing (NDC), in both qualitative and quantitative
terms. Our experimental evaluations on a state-of-the-art manycore system reveal that CND can
be very efective in reducing data access/movement costs, and improves, on average, the execution
time by 40.1% across our programs including both single-threaded and multi-threaded applications.
Further, our simulation based experiments indicate that CND outperforms various (idealistic)
implementations of NDC.

While in this work, we evaluated the efectiveness of our approach in multicore case as well, one
can further enhance our approach by considering unique opportunities a multithreaded execution
can present. For example, while one of the cores can be closer to a subset of data elements (required
for recomputation), the other core can be closer to another subset of data elements. In such scenarios,
determining the ideal location (core) to perform recomputations can be quite challenging, but
also very rewarding, if done carefully. In our future work, we will investigate such additional
multicore/multithreaded execution speciic opportunities for recomputation and also experiment
with other types of benchmarks (e.g., database and cloud workloads). Finally, we will also explore
the idea of pinning critical values (i.e., values that can be used in future recomputations) in fast
cache memories (e.g., L1 and L2 caches).
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