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GPUs are becoming prevalent in various domains of computing and are widely used for streaming (regular)
applications. However, they are highly inefficient when executing irregular applications with unstructured
inputs due to load imbalance. Dynamic parallelism (DP) is a new feature of emerging GPUs that allows new
kernels to be generated and scheduled from the device-side (GPU) without the host-side (CPU) intervention to
increase parallelism. To efficiently support DP, one of the major challenges is to saturate the GPU processing
elements and provide them with the required data in a timely fashion. There have been considerable efforts
focusing on exploiting data locality in GPUs. However, there is a lack of quantitative analysis of how irregular
applications using dynamic parallelism behave in terms of data reuse.

In this paper, we quantitatively analyze the data reuse of dynamic applications in three different granularities
of schedulable units: kernel, work-group, and wavefront. We observe that, for DP applications, data reuse
is highly irregular and is heavily dependent on the application and its input. Thus, existing techniques
cannot exploit data reuse effectively for DP applications. To this end, we first conduct a limit study on the
performance improvements that can be achieved by hardware schedulers that are provided with accurate
data reuse information. This limit study shows that, on an average, the performance improves by 19.4% over
the baseline scheduler. Based on the key observations from the quantitative analysis of our DP applications,
we next propose LASER, a Locality-Aware SchedulER, where the hardware schedulers employ data reuse
monitors to help make scheduling decisions to improve data locality at runtime. Our experimental results on
16 benchmarks show that LASER, on an average, can improve performance by 11.3%.
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1 INTRODUCTION

Graphics Processing Units (GPUs) provide massive computational throughput for a wide spectrum
of applications from various domains such as computer vision [42], finance [37, 49], machine
learning [1, 18], and bioinformatics [55]. As progressively more applications get ported to GPUs
for parallelization, the shortcomings of the traditional GPU execution model become evident.
Particularly, execution of irregular applications with unstructured inputs on GPUs leads to severe
bottlenecks such as imbalanced computational load across the GPU Compute Units (CUs). This
inefficiency is widely observed in adaptive meshes and graph applications which are becoming
important classes of applications due to their increasing popularity. Therefore, it is becoming more
and more difficult to effectively utilize GPUs for such applications [58].

Dynamic Parallelism (DP) is a feature supported by CUDA [40] and OpenCL™ [3]. It allows the
generation and scheduling (launching) of kernels dynamically on GPUs without the involvement of
a host (CPU). This model of computation is quite useful for irregular applications with unstructured
and irregular inputs, as it essentially increases parallelism on-the-fly. Specifically, if there are threads
which are more compute-intensive than other threads, then these threads (parent threads) can
parallelize their work by launching more threads (child kernels). This would allow for better (and
on-demand) load balancing as there are higher number of threads to distribute across the GPU
cores. However, by increasing the parallelism and redistributing the threads, the data reuse and
access pattern can change dramatically. For example, original intra-thread temporal data reuse (i.e.,
the data blocks that are reused within a thread) can translate to inter-thread temporal reuse, due to
the fact that parent thread offloads computations to its child threads. Moreover, this intra-thread
temporal data reuse can even translate to inter-thread spatial locality, as the child kernel has
multiple threads, and each child thread can work on a small portion of data.

Prior techniques on GPU cache optimization involved throttling the available parallelism [25, 30],
bypassing the cache for certain memory requests to reduce contention [32, 60], and building efficient
cache management policies tuned towards GPU applications [27, 41]. These techniques cannot be
ported to improve cache performance for DP applications, as they are agnostic to the on-demand
kernel launch behavior in DP applications. Furthermore, it is extremely difficult to control the
temporal data reuse in applications via cache optimizations as they lack mechanisms to control
the scheduling of instructions for execution. To be able to efficiently control the temporal data
reuse of applications, we need intelligent scheduling strategies. Prior efforts efficiently scheduled
applications based on their reuse behavior using runtime statistics, or via compiler based approaches,
but they do not consider DP applications [30, 31, 44]. Wang et al. [57] proposed a work-group (WG)
scheduling mechanism that maps child WGs together with its parent WG to the same compute
unit (CU) during execution. This strategy does not differentiate between the children of a parent
or take into account the data reuse behavior of the children among themselves. No prior work
quantitatively studied the data reuse nor explored the potential performance benefits by fully
exploiting the data reuse opportunities in DP applications.

Our goal in this paper is three-fold: (1) to quantitatively analyze the intrinsic data reuse oppor-
tunities in DP applications; (2) to reveal the best achievable performance improvements through
a limit study; and (3) to propose a practical scheduling mechanism that improves data locality.
To this end, we first conduct an in-depth data reuse analysis. We define a new “metric” called
reuse ratio which captures the “intensity” of data reuse. The reuse ratio is computed for each pair
of “schedulable units” where a schedulable unit is either a kernel, a work-group, or a wavefront.
We then perform a limit study that exploits the reuse ratios for all possible permutations of the
schedulable units at each level of the scheduling hierarchy and optimizes the placement (temporally
and spatially) of the schedulable units to maximize data locality. Finally, we modify the hardware
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schedulers and propose a practical scheduling mechanism that schedules the schedulable units in a

locality-aware fashion. This paper makes the following major contributions:

o It provides an in-depth data reuse quantification and analysis of GPU dynamic parallelism applica-
tions. The analysis is at multiple granularities (kernel, work-group, and wavefront) with respect
to suitability for improving cache locality via scheduling techniques.

o It defines a new metric called reuse ratio, which captures the intensity of data reuse among
schedulable units. We discuss the merits of this metric and demonstrate how to use it to guide
scheduling strategies for DP applications.

o It performs a limit study by proposing an optimal scheduling mechanism that optimizes compute
placement for cache locality by exploiting reuse ratios at each level of scheduling, viz. kernel,
work-group and wavefront. This is achieved by providing accurate “reuse ratio” information to
the hardware schedulers. The optimal scheduler provides, on an average, 19.4% performance
improvement over the baseline scheduler.

o Based on the key observations from the data reuse analysis, it proposes LASER, a Locality-Aware
SchedulER, that monitors the reuse ratio metric and makes scheduling decisions based on it. Our
experimental results show that, on an average, LASER provides 11.3% performance improvement
over the baseline scheduler.

2 RELATED WORK

Work-group and wavefront scheduling: There has been a substantial body of work on building
efficient work-group and wavefront scheduling mechanisms for GPUs to improve cache perfor-
mance, memory bandwidth utilization, DRAM performance, system performance, and energy
efficiency [19-22, 29-31, 33, 43, 44, 46, 57]. Lee et al. [30] proposed work-group and wavefront
scheduling techniques which optimize the locality for applications with neighboring work-group
data reuse by scheduling work-groups contiguously to CUs rather than in a round-robin fashion.
Li et al.. [31] developed software-based techniques to improve the inter-work-group locality of
an application. Jog et al. [21] investigated multiple scheduling techniques to reduce cache con-
tention and improve memory-side prefetching and bank-level parallelism. Lai et al. [29] developed
a three-stage methodology for mapping threads to cores using a formal model that captures thread
characteristics as well as cache sharing behavior. Wang et al. [57] proposed work-group scheduling
for DP applications, where they bind child WGs to its parent WG in order to exploit parent-child
reuse.

Cache management in GPUs: There are several prior efforts focusing on improving data access
performance on CPUs and GPUs [13, 23, 26, 47, 51-53]. Improved cache performance in GPUs is
mainly achieved via efficient cache management policies ([2, 5, 10, 14, 16, 17, 27, 41]), throttling
the amount of parallelism ([25, 30, 31, 54]), and cache bypassing ([10, 32, 59, 60]). Oh et al. [41]
proposed an adaptive prefetching and scheduling mechanism to improve the GPU cache efficiency.
They achieve this by grouping together work-groups and monitoring the data access patterns of the
wavefronts in a work-group. Koo et al. [27] developed an access pattern-aware cache management
technique which dynamically detects the type of locality of each load instruction by monitoring a
representative wavefront. Chen et al. [10] adaptively bypassed memory requests to the cache based
on reuse distances to protect against cache contention.

To our knowledge, this is the first work that systematically investigates the data reuse and access
patterns of DP applications at various granularities of schedulable units. Our work is most closely
related to the work of Wang et al. [57]. However, their approach does not differentiate between the
children of a given parent kernel, nor does it consider the intra-kernel data reuse. Therefore, we
quantify the memory behavior of DP applications in detail and analyze their data reuse patterns to
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answer the following key questions. Question 1: How prevalent are intra-kernel and inter-kernel
data reuses in DP applications? Question 2: What is the effect of launch overhead on data reuse
patterns? Question 3: Do neighboring work-groups have more of temporal or spatial reuse? and
Question 4: Is it necessary to always prioritize the child work-groups?

3 BACKGROUND

3.1 Dynamic Parallelism

Parent Kernel
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threads (2 1))
Child | [ child | _ (b)
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Fig. 1. (a) DP programming model. (b) Type | DP applications. (c) Type Il DP applications.

In conventional GPU programming model, computations in an application are mapped to work-
items (threads in NVIDIA terminology), work-groups (thread-blocks in NVIDIA terminology),
and kernels. A kernel consists of multiple work-groups (WGs) and a WG consists of multiple
work-items. At runtime, work-items are scheduled in groups, called “wavefronts”. All threads in a
wavefront execute the same instruction in a lock-step fashion. Unlike conventional applications, a
DP application can launch nested device kernels (child kernels), as shown in Figure 1(a). Each work-
item in a kernel has the capability to launch kernels. This feature is particularly useful for irregular
applications, as threads with heavy computations can launch a child kernel and offload some of its
computations to that child kernel. Therefore, one can potentially achieve both parallelism and better
resource utilization. Note that, it is the programmer’s responsibility to decide whether to launch a
child kernel or not from within a parent kernel. Specifically, a threshold is set by the programmer
and used in DP applications to make kernel launch decisions [38, 54]. In Figure 1(a), we call the
depth of the nested launched kernels as Launch Depth. It represents the number of nested levels
(depth) at which child kernels are launched. Note that the GPU hardware needs to reserve memory
space for the child kernels [38, 58]. As a result, the maximum launch depth is limited to 24 by the
hardware [40]. At each launch depth, there can be multiple kernels being launched. We refer to the
number of kernels launched at a given depth as Launch Width.

3.2 Baseline Architecture

Figure 2 shows our baseline GPU architecture with support for DP. A DP application (similar to a
regular GPU application) starts running on a host CPU and the very first kernel (parent) is launched
to the GPU from the host (@). This kernel is also labeled with a software queue ID (e.g., CUDA
stream ID in CUDA terminology), which is used to provide execution ordering among kernels’
There are 32 hardware work queues (HWQs) located in the Grid Management Unit (GMU). Kernels

In DP, the parent thread can choose two ways to assign software queues (SQs) to child kernels. First, it can create a new
SQ before launching a child kernel. Second, each parent WG has a default SQ. Parent threads in the same WG launch child
kernels to the default SQ, if no new SQs are explicitly created for the child kernels.
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Fig. 2. Baseline GPU architecture.

with the same software queue ID are mapped to the same HWQ, and all kernels in the same HWQ
are executed sequentially. If there is an available slot in a HWQ), the launched kernel is pushed into
that HWQ (@). Otherwise, the kernel is suspended in the pending kernel pool (@), waiting for a
free slot in HWQ. Kernels are scheduled for execution in a first-come-first-serve (FCFS) order (@),
with respect to kernel dependencies. The kernels at the head of HWQs can potentially execute
concurrently. That is, the WG scheduler can schedule any work-groups (WGs) from the “head-of-
queue” kernels, and map them onto CUs, if there are enough available resources (@). In the baseline
execution, the WG scheduler picks up WGs from the “head-of-queue” kernel and distributes them
across all CUs in a round-robin fashion. On a CU, wavefronts from WGs are executed on cores.
At any time during wavefront execution, multiple wavefronts may be standing by and waiting
for execution in order to hide long latency operations (e.g., memory accesses, expensive math
operations, etc.). Once a wavefront encounters a long latency operation, that wavefront is switched
out, and another “ready” wavefront is scheduled to overlap with the long latency operation. The
ready wavefront is chosen by the wavefront scheduler which uses a greedy-then-oldest policy
(GTO) [46] to select candidate wavefronts. Specifically, in GTO, the same wavefront is always issued
to execute if it does not encounter any long latency operations. Whenever a long latency operation
is observed, the wavefront is replaced with the “oldest” pending wavefront.

With DP, any thread running on a CU can launch device kernels by calling the driver APL The
newly-launched kernels are pushed into GMU by device driver (@). Note that launching child
kernels incurs extra latencies, (called Launch Overhead) [58]. Due to this overhead, a child kernel
cannot start its execution immediately after launching. This overhead is accurately modeled in our
simulation framework, and multiple approaches have been proposed in the literature to mitigate
it [9, 15, 54, 56].

3.3 Evaluation Methodology

Infrastructure: We use a cycle-level simulator, GPGPU-Sim [6], that enables DP [56] as our
evaluation framework. Table 1 provides the detailed configuration of the baseline GPU architecture.
The maximum number of HWQs is 32, and the maximum number of concurrent WGs per CU is 16.
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Table 1. GPU configuration parameters.

CU 13 CUs, 1400MHz, 5-Stage Pipeline

Resources per || 32KB Shared Memory, 64KB Register File,

CU Max.2048 threads (64 wavefronts, 32 threads/wavefront)

cache per 32KB 8-way L1 D-cache, 12KB 24-way Texture Cache, 8KB 2-way
CU Constant cache, 2KB 4-way L1 I-cache, 128B cacheline

L2 Unified 128KB/Memory Partition, 1536KB Total Size,

cache 128B cacheline, 8-way associativity

Scheduler Greedy-Then-Oldest (GTO) [46] dual wavefront

scheduler, Round-Robin (RR) WG scheduler

Concurrency 16 WGs/CU, 32 HWQs across all CUs

Interconnect 1 crossbar/direction (13 CUs, 6 MCs), 1.4GHz, islip VC and switch allocators
DRAM Model 2 Memory Partitions/MC, 6 MCs, FR-FCFS (128 Request Queue Size/MC)
Child Kernel Latency = Ax + b where Ais 1721

Launch cycles, b is 20210 cycles, x is number

Overhead of child kernels launched per wavefront [56]

Table 2. Benchmark characteristics: Number of kernels, type, depth (refers to the number of stages (parent-
child-barrier) for Type-I applications and Launch Depth for Type-II applications), and high-reuse chain length
(kernels/WGs).

Application Input Sets Benchmark |Total # of [TypeDepth| High-Reuse High-Reuse
Kernels Chain of Kernels|Chain of WGs
(Max, Avg) (Max, Avg)
li%?;g:ﬂf‘fg; Combustion Simulation [28]]  AMR 1261 | 1 | 24 (6.15) (6. 1.5)
Small Graph BFS-small 1030 I 1 (1,1) (240, 11)
Breadth-First Search [58] Citation Network [48] BFS-citation 126 I 23 (1,1) (240, 37)
Graph 500 [48] BFS-graph500 | 6899 i 6 @7,3) (240, 17)
. Citation Network [48 GC-citation 221 I 87 1,1 443, 2
Graph Coloring [34] Graph 500 [48][ ] GC-graph500 | 924 T | 139 ((10, 5)) ((18, 4))
Relation Join [55] Gaussian Distribution  |JOIN-Gaussian 159 1 1 (21, 4) (227, 4)
) Uniform Distribution JOIN-uniform 6725 1 1 (721, 361) (7,2)
Mandelbrot Set [54] N/A Mandel 1025 I 6 (1, 1) (1, 1)
Sparse Matrix Small Matrices SPMM-small 1025 1 1 (1024, 28) (256, 23)
Multiplication [54] Large Matrices SPMM-large 5121 T 1 (824, 39) (256, 72)
Quick Sort [39] N/A Quicksort 56 I 24 (48, 28) (48, 28)
Radix Sort N/A Radixsort 4765 I 24 (176, 21) (176, 21)
Sequence Alignment [11]| Arabidopsis Thaliana [36] SA 24 I 1 (22, 19) (289, 16)
Single Source Citation Network [48] SSSP-citation 6524 I 23 (2612, 121) (165, 7)
Shortest Path [58] Graph 500 [43] SSSP-graph500] 16087 T 6 (5830, 219) (189, 28)
Table 3. Input characteristics.
[ Name [ Size
Combustion Simulation [28] Cell count: 150,000,000
Small Graph Vertices: 1024 Edges: 1,047,552
Citation Network [48] Vertices: 227,320 Edges: 814,134
Graph 500 [48] Vertices: 65,536 Edges: 2,456,071
Gaussian Distribution Array 1: 300,000 Array 2: 300,000
Uniform Distribution Array 1: 204,800 Array 2: 204,800
Small Matrices Matrix 1: 512*512 Matrix 2: 512*512
Large Matrices Matrix 1: 5,120*512 Matrix 2: 512*5,120

Benchmarks: We use ten GPU DP applications from various benchmark suites. For applications
whose data access patterns are highly influenced by input data, we also provide various inputs.
As shown in Table 2, we call an <application, input> pair as one “benchmark”, and there are a
total of 16 benchmarks. We also provide the total number of launched kernels in Table 2. As one
can see, these DP applications launch many more kernels compared to conventional (static) GPU
applications [58], which motivates us to explore the kernel-level data reuse.
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For a DP application, there can be two types of kernel launch patterns: Type I in Figure 1(b),
and Type II in Figure 1(c). In type I, the launch depth for each parent kernel is 1. After the parent
kernel and all its child kernels finish their executions, the host launches another barrier kernel to
check some application related criteria in order to decide whether to launch another parent kernel
or not. Let us consider BFS, where each thread in a parent kernel is responsible to traverse the
edges of a node from the frontier node set that contains the nodes visited in last level of search.
Based on the number of edges connected to a node, the parent thread may launch a child kernel to
help traverse those edges. Before the next level of search starts, the visited edges and the frontier
node set should be updated. Therefore, the host launches a barrier kernel to perform the update
and also to check whether the search is over. If there are nodes not visited yet, another parent
kernel will be launched from the host to perform the next level of search. Applications that have
Type I feature include BFS, Graph Coloring, Relation Join, Sparse Matrix Multiplication,
Sequence Alignment, and Single Source Shortest Path. In type II, the launch depth can be
any number up to the hardware limit (24 levels). For example, in Quick Sort, the left-pivot array
elements are sorted by a child kernel, whereas the right-pivot array elements are sorted by another
child kernel. As a result, the kernel launch pattern is similar to a binary tree. If the maximum depth
is reached or there are very few elements for processing (i.e., below the threshold), bubble sort is
used to avoid any potential overheads involved in launching additional child kernels. Applications
that have type II feature include AMR, Mandelbrot Set, Quick Sort, and Radix Sort. We list the
types of each benchmark in Table 2. In the table, the number next to the type indicates either the
number of barrier kernels in Type [, or the launch depth in Type II. We also provide the inputs used
to execute our applications in Table 3.

3.4 Data Locality in DP

Prior works have shown that irregular applications exhibit data locality [7, 8, 45]. However, this
data locality is hard to capture due to the dynamic, unpredictable, and divergent memory access
patterns that generate it. As a result, they are not exploited well in current GPU architectures. By
using DP, some of the data reuse is exposed between the boundary of kernels, WGs, and wavefronts
due to child kernel launches. Specifically, a parent thread generally prepares or pre-processes
the data before launching its child kernel. The child kernel operates on this data and returns the
result back to the parent kernel. This “producer-consumer” relationship introduces temporal data
locality between the parent-child kernels, WGs, and wavefronts. Meanwhile, child kernels (WGs or
wavefronts) operate on neighboring data elements in the data layout. Since GPUs generally have
large cachelines, spatial data locality among sibling-sibling kernels (WGs or wavefronts) is also
exposed.

4 REUSE CHARACTERIZATION

In this section, we conduct an in-depth characterization of data reuses at different schedulable units
for our benchmarks listed in Table 2. We profile each benchmark using GPGPU-Sim (discussed
in Section 3.3) to get the memory footprint traces and analyze data reuse by parsing the memory
traces. The memory footprints are extracted at a data block (128 Byte cache line) granularity after
memory coalescing.

4.1 Kernel-Level Reuse

We explore three types of kernel-level data reuse based on the kernel relationships: self-kernel,
parent-child, and sibling-sibling. To help explain these three different types of data reuses, let
us consider a representative kernel launch sequence, shown in Figure 3(a). The parent kernel A
launches child kernels B, C and E. Child kernels B and C further launch grandchild kernels D
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Fig. 3. Launch sequence and data reuse. (a) kernel-level. (b) work-group-level.
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Fig. 4. Quantifying kernel-level data reuse Fig. 5. Reuse distances for kernel-level data reuse.

and F, respectively. A solid line in the figure denotes the kernel launch sequence, while a broken
line denotes a potential data reuse. From a particular kernel’s perspective (kernel B for example),
a self-kernel data reuse happens when a data block is referenced multiple times by itself during
execution. In comparison, a parent-child data reuse happens when a data block is accessed at
least once by both the parent kernel and child kernel (e.g., parent B and child D). Similarly, a
sibling-sibling data reuse is said to occur when a data block is accessed at least once by both the
sibling kernels (e.g., B and C). Note that sibling kernels are the child kernels launched from the
same parent WG. For example, child kernels B and C are considered as sibling kernels; however,
child kernels B and E (likewise, D and F) are not. We use this definition due to the fact that the
child kernels launched by different parent WGs rarely share any data blocks and are unlikely to
work on the same portion of the input data [58].

We count the number of memory accesses to the same data block made by self-kernel, parent-
child kernels, and sibling-sibling kernels. Figure 4 plots the percentage of the shared memory
footprints over the total memory footprints. Note that, a particular memory access can be counted
multiple times toward different types of reuses. For example, a data block accessed by a kernel can
also be accessed by its parent kernel and its siblings. As a result, the access to that data block is
counted as both parent-child data reuse and sibling-sibling data reuse. This is the reason why the
total sum of the three types of reuses can exceed 100% in Figure 4. From this figure, we make the
following critical observations:

Observation 1: There exists significant data reuse in DP applications at a kernel granularity.
Data blocks are heavily reused across all three types of kernel relationships. Specifically, on
an average, across all 16 benchmarks, self-kernel, parent-child kernel, and sibling-sibling kernel
account for 77.8%, 32.2%, and 41.1% of the total data reuse with respect to the total memory footprint,
respectively. Recall the Question 1 from Section 2, our characterization results show that data
blocks are frequently reused among different kernels in these DP applications.

Observation 2: The amount of data reuse is different across different applications. For instance,
applications such as AMR and Mandel do not have much data reuse for any of the three types of kernel
relationships. This is because these two applications are compute-intensive with few data reuse.
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All the other applications have significant data reuses in different types of kernel relationships.
This is due to the significant data reuse exposed by the algorithms implemented in the applications.
Observation 3: For a given application, different inputs can lead to different data reuse patterns.
This can be observed in GC, SPMM, and SSSP. For example, SSSP-citation shows significant self-
kernel and sibling-sibling reuses, whereas SSSP-graph500 exhibits more data reuse in parent-
child and sibling-sibling kernels. This is because the irregularity of input (e.g., a graph) in such
applications can cause different number of child kernels to be launched with different kernel
dimensions, eventually leading to different data access and reuse patterns. For example, the average
number of neighboring nodes in citation graph is relatively small when compared to the graph500
graph. As the threshold which determines child kernel launch is fixed to a smaller number in SSSP
by the programmer, SSSP-citation launches fewer as well as smaller child kernels compared to
SSSP-graph500. On the other hand, the child kernels in SSSP-graph500 process more neighboring
nodes than the child kernels in SSSP-citation. Consequently, SSSP-graph500 has more parent-
child data reuse, but less self-kernel data reuse than SSSP-citation.

Next, we perform a study on characterizing the reuse distances of the applications. We define

“reuse distance” as the number of unique data blocks between two references to the same data
block. Generally, references to the same data block with short reuse distances are expected to hit
in the caches. Figure 5 gives the CDF of the average reuse distances (in log, scale) between the
references to the same data block for three types of data reuses, across all the benchmarks. From
the figure, we make the following observations. First, in DP applications, the reuse distances of all
three reuse types are generally larger than the GPU caches can take advantage of. For example, in
self-kernel reuse, more than 60% and 25% of the data blocks referenced by the kernels are evicted
from L1 cache and L2 cache, respectively. Second, the distances exhibited by the parent-child data
reuses are longer when compared to the distances exhibited by the self-kernel and sibling-sibling
data reuses. This is because the child launch overhead (discussed in Section 3.2) delays the child
kernel execution, leading to long distances in parent-child data reuses. This provides an answer to
Question 2 from Section 2. As these child kernels are generally launched in bursts, they execute
concurrently, leading to shorter reuse distance for the sibling-sibling relationship.
Takeaway: Unlike traditional GPU applications (i.e., those with static/compile-time parallelism),
DP applications launch massive numbers of kernels (children). In addition to the data blocks being
reused within a kernel, these light-weight child kernels exhibit high data reuses with their parent
kernels as well as among themselves. However, long reuse distances prevent the underlying GPU
caches from taking advantage of most reused data blocks.

This motivates us to explore a locality-aware kernel scheduling strategy which can schedule
kernels with high degrees of data reuse among themselves close to each other during execution.
However, we first need to quantify the “degree of data reuse” between the two kernels. In other
words, we need to determine the “strength” of the kernel-to-kernel relation (in terms of the
“intensity” of data reuse). Kernels having intensive data reuse among themselves should have a
higher priority to be scheduled together when compared to kernels rarely having any data reuse.
To this end, we define Reuse Ratio as a measure of the degree of data reuse among kernels.
Self-Kernel Reuse Ratio (Ry): Given a kernel k, the memory footprint of kernel k is denoted as
M. Each entry in My is a memory access to a data block. We define the self-kernel reuse ratio, Ry,
as:

3 u"“CI(Mk)’ B
size(My)

where uniq(My) is the number of unique data blocks referenced by kernel k, and size(My) is the

total number of data block accesses. Therefore, 1 — uniq(My)/size(My) captures the fraction of

“repeated accesses” to the same data block.

Ry =
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Parent-Child Reuse Ratio (R,_.): Given a parent kernel p and its child kernel c, the traces of
memory footprints from parent kernel p and child kernel ¢ are denoted respectively as M, and M.
The parent-child data reuse ratio, R,_, is defined as:

size(x,x € M. | x € unig(M,) Nuniq(M.))
pme ™ size(M,) ’

The numerator is the total number of data blocks referenced by child kernel ¢, where each data
block is also referenced by parent kernel p at least once. The denominator is the total number of
data blocks accessed by the child kernel. Note that a data block can be referenced multiple times by
either the parent kernel or the child kernel. Our definition of parent-child reuse ratio captures the
“intensity” of data reuses in a child kernel with respect to its parent. Note that, we do not count

)

child-parent kernel reuse ratio as child kernels need to be launched by their parent kernels. For this
to happen, the parent kernels already need to be scheduled. Therefore, child-parent kernel reuse
ratio does not help in dynamic kernel scheduling. Since a DP application can launch multiple levels
of child kernels, a child in level [ is considered as a parent in level [ + 1.

Sibling-Sibling Reuse Ratio (Rcx_y): Given two child kernels ¢; and ¢; launched by the same
parent WG p,,4, the memory footprints of these two child kernels are denoted as M.; and M,
respectively. We define the sibling-sibling data reuse ratio, Rcx—¢y, as:

size(x,x € Mcx | x € uniq(Mcx) N unig(Mcy))
size(Mcy)

where (cx, cy) can be either (c1, c2) or (c2, c1) which represent the reuse ratio in terms of child
kernel c1 or c2, respectively. It is important to note that, we separate the reuse ratios for the two
child kernels in the child kernel pair because doing so allows us to capture the scenario where two
child kernels have different memory footprint intensity. For example, let us consider the scenario in
Figure 6. Suppose child c1 has 100 accesses, child ¢2 has 50 accesses, and child ¢3 has 200 accesses.
Let us assume that the data blocks referenced by 30 accesses from c2 are also referenced by c1.
In this case, the reuse ratio R.»_; is 30/50 = 0.6. However, there can be 40 accesses from c1 that
reference the same set of data blocks. This is due to the fact that a data block can be referenced
multiple times by a kernel. As a result, the reuse ratio R;;_.; is calculated as 40/100 = 0.4.

It is important to emphasize that the reuse ratio does not capture the ab-
solute number of data blocks being shared between the involved schedulable
units. For example, both R.;_.; and R.3_.1 are 0.6. However, there are 120
data blocks accessed by c¢3 that are also accessed by c1, whereas only 30 data
blocks accessed by c2 that are also accessed by c1. Although the absolute
value would be more accurate to represent the quantity of data reuses, it

c2 a
Fig. 6. Sibling-sibling i Jess effective in managing caches. For instance, a kernel pair having one
data reuse.

: (3)

ch—cy =

million total accesses with a 10% reuse ratio will have many more data blocks
being reused when compared to a kernel pair having one thousand total accesses with 90% reuse
ratio. However, the first kernel pair is not friendly to caches: there are 90% of data blocks that are
not being reused, and therefore, it may lead to severe cache contention and poor cache performance.
Results: Figure 7 shows the data reuse ratio at the kernel-level for all 16 benchmarks. We divide
the data reuse ratio into 10 ratio bins (b0 — —b9), with the stride size of 0.1. All 10 ratio bins are
labeled on the X-axis. The Y-axis plots the CDF of the kernel pairs, which captures the number
of kernel pairs that fall into the different ratio bins. Specifically, for two kernels in a kernel pair,
we first calculate the three types of data reuse ratios using Equations (1)—(3) given above. Then,
for each ratio bin, we count the number of kernel pairs whose reuse ratio falls into that bin. For
example, if two kernels in a kernel pair have, say, 0.46 parent-child reuse ratio, we count this kernel
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Fig. 7. Kernel-level data reuse ratios for all benchmarks. Each plot includes the results of one benchmark.
The X-axis represents the data reuse ratio. The reuse ratio is divided into 10 bins (b0, b1, ..., b9), using 0.1 as
stride size. If the reuse ratio of a kernel pair is between (x,x + 0.1), that kernel pair is counted in bin bx. The
Y-axis represents the CDF of reuse pairs. The black bar in each plot represents the CDF of self-kernel reuse,
whereas the yellow and red bars represent the CDFs of parent-child and sibling-sibling reuses, respectively.

pair in the ratio bin b4. From the cumulative results shown in Figure 7, we make the following
important observations:

Observation 1: Different benchmarks show different kernel pair distributions in all three types of
kernel reuse ratios. For benchmarks AMR and Mandel, most of the kernel pairs have low self-kernel
reuse ratio (less than 0.1) as these two benchmarks have few data blocks being reused (Figure 4).
For benchmarks such as GC-citation, GC-graph500, SPMM-small, SPMM-large, Radixsort, SA,
SSSP-citation and SSSP-graph500, most of the parent-child kernel pairs and/or sibling-sibling
kernel pairs have similar reuse ratios. For example, in SA, 85% of parent-child kernel pairs fall in to
b5. Benchmarks such as Quicksort, BFS-small, BFS-citation, BFS-graph500, JOIN-Gaussian
and JOIN-Uniform, have a uniform distribution in one or more of their kernel relationships. For
example, in Quicksort, the sibling-sibling kernel pairs are uniformly distributed across the 10
reuse bins.

Observation 2: For applications such as SPMM, BFS, GC, and SSSP, different inputs can lead to
different distributions of kernel pairs in terms of their reuse ratios. For example, when SPMM is used
with small sparse matrices (SPMM-small) as inputs, we see that there is a significant fraction of
parent-child and sibling-sibling kernel pairs having high reuse ratios, whereas, with large sparse
matrices (SPMM-large) as input, the number of parent-child kernel pairs with high reuse ratio
reduces significantly (i.e., most of the parent-child kernel pairs fall into bin b0). The main reason is
that the threshold (discussed in Section 3) set by the programmer significantly affects the number
of child kernels and their properties. Therefore, for large matrices, parent thread always opts to
launch child kernels to perform the multiplications in child kernels (due to more elements per row
and column), whereas for small matrices, the multiplications are usually performed by the parent
thread itself in an iterative fashion as there are fewer elements in the rows and columns of the
input matrices.
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Observation 3: By comparing Figure 4 and Figure 7, we observe that a benchmark with a high
“data reuse” does not necessarily have high “reuse ratio”. This is because, data reuse is measured
as an aggregated metric, whereas the reuse ratio is measured as a pair-wise metric. For example,
SPMM-small has high self-kernel data reuse than parent-child and sibling-sibling kernel data reuses
(Figure 4). However, all of the parent-child kernel pairs fall into »9 in Figure 7 and all sibling-sibling
kernel pairs fall into b8 and b9, but most of the self kernel pairs fall into b0 and b1. This discrepancy
is because the reuse ratio is normalized to the memory footprints of two kernels whereas data
reuse is computed using the memory footprint of the entire application. As we discussed earlier,
reuse ratio is a more effective metric in managing caches.

Takeaway: Our results show that DP applications introduce parent-child and sibling-sibling kernel
relationships in addition to the self-kernel relationship. The reuse distance analysis indicates that
GPU cache system is unable to take advantage of inherent data reuses in DP applications. We define
and analyze reuse ratio to indicate the “intensity” of the data reuses among kernels, which is used
later to design a locality-aware kernel scheduling mechanism.

4.2 Work-group-Level Reuse

Work-groups are the smallest granularity of scheduling at the CU level. Note that, while it may
seem possible to extend the kernel level data reuse information (discussed above) to the WG level,
it is not the case. This is due to the fact that the kernels from a given application might have
different number of WGs, and some of these WGs contribute to significant data reuse whereas
others may not. Conceptually, we need to understand the data reuses among WGs in order to map
WGs to CUs in a “locality-aware” fashion, and schedule them to execute close to each other in
time to take full advantage of the per CU L1 cache. Similar to kernel level data reuse, we explore
data reuse along four types of WG relationships: self~-WG, intra-kernel-WG, parent-child-WG, and
sibling-sibling-WG (shown in Figure 3(b)). Self-WG reuse and intra-kernel-WG reuse are defined
within a kernel boundary (i.e., intra-kernel), whereas parent-child-WG reuse and sibling-sibling-WG
reuse are defined across different kernels (i.e., inter-kernel). Specifically, for a given WG (B1 from
kernel B highlighted in Figure 3(b)), self-WG reuse captures the fraction of data blocks that are
accessed multiple times by that same WG. Intra-kernel-WG reuse captures the data blocks reused
between the WGs within the same kernel (B1 and B2). Parent-child-WG reuse is measured between
the parent WG (B1 in the example) and all WGs from its launched child kernels (D1 and D2). Finally,
sibling-sibling-WG reuse captures the data blocks reused among the WGs that belong to the sibling
kernels (e.g., B1 and C1).

Self-WG Reuse Ratio: Similar to self-kernel reuse ratio calculation, self-WG reuse ratio can be
calculated using Equation (1) by replacing kernel with WG. Specifically, for a particular WG wg,
Ryg =1 —uniq(M,,g)/size(M,,q).

Intra-kernel-WG Reuse Ratio: Given two WGs wg; and wg; from a kernel k, we define intra-
kernel-WG reuse ratio using Equation (3) by replacing (cx, cy) with (wg;, wg;). We want to emphasize
that this equation calculates the reuse ratio in terms of WG wyg;. That is, the ratio Ry, 4,-wg, may
not be the same as Rygj-wg;-

Parent-Child-WG Reuse Ratio: Given a parent WG wg, and a WG wg, from a child kernel
launched by wg,,, we define the parent-child-WG reuse ratio using Equation (2) by replacing p and
¢ with wg, and wg,, respectively. One may notice that this definition only captures the reuse with
respect to child WG wg,. Ideally, we should also calculate the reuse ratio with respect to that parent
WG. However, this is not necessary in practice. This is because, in order to schedule a child WG
with its parent WG, the child kernel should be first launched and be ready to execute. That is, for a
child WG to be visible to the scheduler (i.e., for a child kernel to be launched by the parent WG),
its parent WG must be already scheduled and running on the CU. Thus, we just need to focus on
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Fig. 9. Intra-wavefront data reuse. Fig. 10. Inter-wavefront data reuse.

where to schedule the child WG based on the child WG reuse ratio, not the parent WG, as it would
be already running.
Sibling-Sibling-WG Reuse Ratio: Sibling-sibling-WG reuse ratio is measured among the WGs
that belong to sibling kernels. The formal definition is similar to that of the sibling-sibling kernel
reuse ratio and can be obtained by replacing the kernel information with WG information. It can
be treated as a finer granularity of data reuse compared to the sibling-sibling kernels and can be
calculated using Equation (3).
Results: Figure 8 shows the cumulative distribution of WG pairs for each benchmark. The four
bars in each plot of this figure represent the four types of WG relationships.

We make the following observations from these results:
Observation 1: Similar to kernel level, the WG pair distributions of intra-kernel-WG, self-WG,
parent-child-WG and sibling-sibling-WG are also application and input dependent.
Observation 2: By comparing Figure 7 and Figure 8, we observe that, in benchmarks AMR, BFS-citation,
BFS-graph500, GC-graph500, JOIN-Gaussian, JOIN-uniform, Quicksort, Radixsort, SA and
SSSP-graph500, the distribution of the WG pairs on a particular type of reuse ratio follows a
similar trend to the distribution of kernel pairs on the same type of reuse ratio. In other words,
the reuse ratio can translate from kernel level to WG level, due to the fact that a kernel consists
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of multiple WGs. It is also interesting to observe that self-kernel reuse can translate to either
intra-kernel-WG reuse, or self-WG reuse, or both. For example, in BFS-graph500 (see Figure 7 and
Figure 8), the self-kernel reuse translates to intra-kernel-WG reuse. However, in BFS-citation,
self kernel reuse translates to both intra-kernel-WG and self-WG reuse. This is because the child
kernels contain more WGs in BFS-graph50@ compared to the child kernels in BFS-citation. For
benchmarks BFS-small, GC-citation, Mandel, SPMM-small, SPMM-large and SSSP-citation,
the WG pair distribution is different from the kernel pair distribution. The is because that most of
these applications contain branches in their kernel codes. Based on the inputs, the runtime branch
conditions are different across WGs in a kernel. As a result, WGs may execute different paths,
leading to different data reuse patterns at the WG level.

Observation 3: If two kernels do not reuse data blocks, all the WGs from these two kernels do
not reuse data blocks either. For example, Radixsort and SPMM-small have very few kernels with
high self-kernel reuse ratio. Consequently, these two benchmarks also have very few WGs with
high self-WG and intra-kernel-WG reuse ratios’. However, this is not true in the inverse case. If
two kernels have high data reuse between them, this does not guarantee that all the WGs from the
two kernels will have high data reuse. For instance, more than 50% of the sibling-sibling kernels
in SPMM-small have reuse ratios larger than 90%. However, at the WG granularity, 75% of the
sibling-sibling WGs have reuse ratio less than 10% and the remaining 25% have reuse ratio more
than 80%. This disparity arises due to the branch instructions in the kernel code, which lead to
divergent paths across WGs, as discussed in Observation 2.

Takeaway: Our results indicate that not only neighboring WGs significantly share data blocks
(Question 3), but also the parent-child WGs and sibling-sibling WGs (Question 4). This informa-
tion is helpful in assisting WG-to-CU mapping. Specifically, WGs with high reuse ratios should be
scheduled on the same CU and executed in close proximity in time, in order to take advantage of
the per-CU L1 cache. On the other hand, WG with high self-WG reuse ratios should be scheduled
to low-load CUs in order to reduce the L1 cache contention.

4.3 Wavefront-Level Reuse

Wavefront is the smallest schedulable unit and it is the granularity at which the GPU executes
instructions. Therefore, wavefront scheduler can impact data locality significantly. To quantify the
data reuse in wavefronts, we characterize the intra-wavefront and the inter-wavefront data reuses
for all our benchmarks. For a wavefront w, the intra-wavefront reuse is quantified using Equation
(1) by replacing kernel k with wavefront w. Similarly, given two wavefronts w, and wy, the inter-
wavefront reuse is quantified using Equation (3) by replacing (cx, cy) with (wy, wy). Intuitively, one
can still define self-wavefront, parent-child-wavefront, and sibling-sibling-wavefront relationships
and analyze data reuses along those relationships. However, we choose to classify data reuses into
inter-wavefront and intra-wavefront reuses, due to following two reasons. First, wavefronts are
mapped to CUs at a WG granularity. In other words, all wavefronts from the same WG are mapped
to a particular CU at the time that WG gets scheduled. Second, once mapped to a CU, wavefronts
cannot migrate or be reassigned to other CUs, as WG migration is not supported. These two reasons
limit the capability of scheduling “any” set of wavefronts together on the same CU. For example,
suppose that two wavefronts from two sibling WGs have high inter-wavefront reuse between them.
In order to convert the data reuses between these two wavefronts into data locality (cache hits), the
two sibling WGs have to be scheduled first. As there are limited hardware resources, it is impossible
to schedule all the WGs together to have all the wavefronts ready for the wavefront scheduler.

2Both self-WG and intra-kernel-WG are within a kernel boundary, and a low self-kernel reuse leads to a low self-WG and
intra-kernel-WG reuses.
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Algorithm 1 Locality-aware kernel scheduling

INPUT:
List_k : kernels launched in pending kernel pool
1: while HWQ g; is empty do
2 for kernel k from the head of HWQ g, where i # j do
3 Search for high reuse kernels with ky
4: high_reuse(ky) < (ky1, kyz, ..., kyn)
5 if ky; is also in List_k then
6 schedule ky; to g; and remove ky; from List_k

Once both the WGs are scheduled, it is possible for the wavefront scheduler to exploit the reuse
between these two wavefronts. This is captured as inter-wavefront locality. We characterize the
intra-wavefront and inter-wavefront reuse ratios in Figure 9 and Figure 10, respectively. We divide
reuse ratio into 10 bins (b0 — b9), and for each benchmark, the Y-axis reports the percentage of
wavefront pairs that fall into different bins.

Takeaway: Overall, DP applications have significant number of wavefronts exhibiting intensive
intra-wavefront reuse. Moreover, there is also a sizable fraction of wavefronts showing intensive
inter-wavefront reuse. Since a wavefront can offload its computations to other wavefronts by
launching child kernels, some of the intra-wavefront data reuses are transferred to inter-wavefront
data reuse between parent wavefront and child wavefronts [58].

5 OPTIMAL LOCALITY-AWARE SCHEDULER: A LIMIT STUDY

In this section, we propose an “optimal” scheduling mechanism to realize the maximum potential
performance gains that can be achieved by leveraging data reuses in DP applications. Note however
that, this optimal scheduler only has a priori knowledge about the data reuse patterns in the DP
benchmarks and cannot change any application (data dependency, correctness, etc.) or hardware
(occupancy limits, cache replacement policies, etc.) constraints to improve data locality. For this
limit study, we profile all the benchmarks and analyze the reuse ratio among the schedulable units
at kernel, WG and wavefront granularities. Then, we discuss scheduling policies that choose the
appropriate schedulable units based on the reuse ratios. Note that, the scheduling policies in this
limit study are not implementable in practice. Instead, they reveal the “optimal” benefits one can
get from realizing data reuse in DP applications.
Challenges: There are several challenges involved in building an optimal scheduling mechanism.
First, hardware constraints limit the effectiveness of the schedulers. For example, high reuse kernels
should be launched to different HWQs for concurrent execution, but the number of HWQs limits
the number of kernels that can execute concurrently. Second, in all the three granularities of reuses
studied, high reuse schedulable units can form “reuse chains”. For example, if kernel k1 has a high
reuse ratio with kernel k2, and k2 also has high reuse with kernel k3, all three kernels collectively
form a high reuse chain, k1-k2-k3. We quantify maximum as well as average high reuse chain length
at kernel and WG granularities (shown in Table 2). For the limit study, we define “high reuse” as a
reuse ratio of greater than 0.4. Since there are limited hardware resources (e.g., register file) and
limited concurrency, it is impossible to always schedule the entire chain to hardware for concurrent
execution. For example, in Radixsort, the maximum WG chain is 176, and as a result, it is not
possible to find a CU and schedule all the 176 WGs in that CU. Third, scheduling an entire reuse
chain of WGs into a CU can also lead to workload imbalance, causing some of the CUs to have
more computations, while other CUs are idle. The WG scheduler should be able to dynamically
balance the workload among CUs without compromising much on data locality.

Algorithm 1 provides the high-level pseudo-code for optimal kernel scheduler. Whenever there
is an empty slot in any HWQ, the kernel scheduler tries to find a candidate kernel which has the
highest reuse ratio with the already-running kernels, and schedules it into the head of that empty
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Algorithm 2 Locality-aware WG scheduling

INPUT:
Qcu;: The CU queue of CU;.
1: for each Qcy; do /**schedule reuse chains to CU queues®/

2 if size of Qcy; is minimum then

3 schedule reuse chain (wgi, wga, ..., wgn) to Qcu;

4: for each CU; do  /**schedule WGs on CU*/

5 if CUj can issue a WG then

6 if Qcu; is empty then Steal an WG from other CU queue.
7 else issue WG from Qcuy;

HWQ. In other words, it tries to maximize the potential chances of running high reuse kernels
concurrently. A significant benefit of our scheduling strategy is that it facilitates the subsequent
locality-aware WG scheduling. More specifically, the WG scheduler is free and safe to choose
any WGs from these high reuse kernels and schedule the selected WGs into CUs as long as there
are enough hardware resources. It should also be noted that, dependencies among parent kernels
and child kernels are rare in dynamic applications [38]. However, if there is a dependency, the
dependent kernels are labeled with same software queue ID (e.g., CUDA stream), which in turn is
mapped to the same HWQ for sequential execution. Our scheduler tries to co-locate parent and
child kernels during scheduling such that the data reuse between dependent kernels are captured.

Algorithm 2 shows the WG scheduling policy used in our limit study. We define reuse ratio to be
“high” if it is greater than 0.4. We form the high reuse chains of WGs based on the characterization
results and import the high reuse chains to Algorithm 2 for scheduling. To take high reuse WG
chains into consideration, we associate each CU with a CU queue. At runtime, we schedule high
reuse WG chains into these CU queues. Note that the WGs in CU queues do not occupy CU
resources (e.g., hardware threads, register file). Once a CU has sufficient available resources, it
selects a candidate WG from its CU queue. Note that, scheduling an entire WG chain onto a single
CU can lead to load imbalance (in terms of the number of WGs assigned) across different CUs. This is
due to the different lengths of the WG reuse chains and can lead to significant GPU under-utilization
and performance degradation. To avoid load imbalance, every time a WG chain is to be scheduled,
all the CU queues lengths are checked. The WG chain is assigned to the CU queue with the least
number of WGs in its queue. To tackle the issue of load imbalance, we enable WG stealing across
the CU queues. Specifically, if a CU has available resources and its associated CU queue is empty, it
steals a WG from another CU queue. Note that WGs that have been scheduled and are executing
on a CU cannot migrate.

Once a WG is scheduled on a CU, the wavefronts in the WGs are mapped to the hardware
wavefronts. There are a total of 64 hardware wavefronts in our baseline GPU, and the default
wavefront scheduler is GTO [46]. GTO scheduling performs well in achieving intra-wavefront data
locality. However, it is not as effective in exploiting inter-wavefront data locality. To address this, we
enhance the two-level wavefront scheduler [35]. More specifically, if two WGs have high reuse ratio,
the wavefronts from these two WGs are grouped together and executed in a round-robin fashion.
To select between the groups, GTO is used. For example, let us assume four WGs: wgl = (w11, w12),
wg2 = (w21, w22), wg3 = (w3), and wg4 = (w41, w42). Suppose that work-groups wgl, wg2 and
wg3 have high data reuse ratio among themselves, and wg4 has high self-WG reuse. Let us further
assume all four WGs are running on the same CU. In this case, we make two groups of wavefronts
based on the WG reuse ratios: groupl = (w11, w12, w21, w22, w3) and group2 = (w41, w42). First,
GTO is used to select between the two groups, and once the group is selected, the wavefronts
within the group are executed in a round-robin fashion.

Note that, although we use the profiled data reuse information to guide our scheduling, we
still cannot achieve the optimal data locality along with the optimal performance. The reason
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for this is two-fold. First, there is a tradeoff between parallelism (workload balance) and data
locality. For instance, to guarantee CU occupancy, we have to schedule a WG whenever a CU has
available resources. Consequently, if a high reuse WG from a child kernel is not available to the
scheduler (e.g., due to launch overhead), we do not want to reserve the CU resources while waiting
for a high reuse WG to be scheduled. This is because leaving a CU under-utilized reduces the
effectiveness on tolerating long latency operations and leads to performance degradation. Second,
GPUs usually have smaller caches compared to CPUs. Even with our locality-aware scheduling
strategies, it is not guaranteed that all of the reused data blocks can remain in the cache when they
are reused. To further improve data locality in GPUs, our scheduling strategies can co-exist with
other locality-aware cache optimizations [17, 27, 41].

Implementation Issues: It is not feasible for the optimal scheduler to be implemented in practice.
This is due to two main reasons. First, the data reuse information that is needed at runtime is not
known a priori. Unlike regular applications, where profiling some training applications/inputs to
build a prediction model can help predict the reuse information for new applications/inputs [12, 50],
it is not possible to do the same for DP applications. This is due to the irregular and unstructured
behavior of the applications and their inputs, as discussed in Section 4. Second, even if the data
reuse information was known a priori, the bookkeeping and hardware overheads of implementing
an optimal scheduler in practice would be too high due to the increase on area and power costs.

6 LASER - LOCALITY-AWARE SCHEDULER: A PRACTICAL APPROACH

In this section, we distill the observations from our data reuse characterization and limit study
presented above, and propose LASER, a Locality-Aware SchedulER, that makes scheduling decisions
based on the reuse ratios. The reuse ratios are computed dynamically at runtime with minimal hard-
ware overheads and no profiling requirements. Figure 11 depicts the necessary architectural support
required to implement LASER. We modify the baseline GPU architecture by extending/adding
components in the GMU, WG scheduler, and CUs.

GMU: In the baseline GPU, the newly launched kernels (device kernels) are either directly launched
into the HWQs in the GMU or temporarily “stored” in the pending kernel pool (a queue based
structure) if there are no empty slots in HWQ. We partition the pending kernel pool to have two
priority queues: High-Priority Queue (HPQ) and Low-Priority Queue (LPQ) @. A kernel is queued
to either HPQ or LPQ based on the priority flag associated in the kernel instance €. The priority
flags of child kernels are set at the time the parent thread launches the child kernels. The priority
values are determined based on the outputs of reuse monitors (discussed later in this section)
located in each CU. Once there is an empty slot in HWQ, the GMU selects the kernel at the head of
HPQ and only selects a kernel from LPQ when HPQ is empty @. Since we partition the pending
kernel pool into HPQ and LPQ without increasing the pool capacity, the only incurred hardware
overhead is adding one more read port and one more write port to the pending kernel pool.

WG scheduler: Recall that, in the baseline GPU scheduler, WGs from “head-of-queue” kernels
in HWQs are scheduled to CUs in a round-robin fashion. The WG scheduler keeps tracks of the
necessary WG scheduling information such as next WG to be scheduled and WG dimension for
every kernel. In LASER, we extend the information table to include the parent information (i.e.,
parent kernel ID and WG ID @). We also add a new table called Schedule Status Table (SST) in the
WG scheduler to track the running WGs on each CU @. Each entry in SST contains the information
of the running WGs in the form of (k_id, WG_id) pair. Since each CU can have a maximum of 16
WGs resident [40], each table entry for a CU contains information from a maximum of 16 WGs.
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Therefore, we need 1664 bytes for the hardware SST °. A (k_id, WG_id) pair is inserted into the
SST once the WG is scheduled to a CU and removed from the SST when the WG finishes execution
and relinquishes its occupied resources. For scheduling a child WG, the WG scheduler relies on its
parent’s information and the information from SST, and schedules it on a CU where the parent
WG is already running. As a result, parent-child WG reuse is captured. Recall that multiple WGs
can have high data reuse among them and form reuse chains. To preserve the data reuse in reuse
chains, we add a CU queue (CUQ) @ for each CU. CUQs serve two purposes: (1) to ensure that the
high reuse WGs are executed by the same CU as much as possible, and (2) to enable WG stealing
across different CUs in order to avoid workload imbalance. The CUQs are mapped onto CUs in a
one-to-one fashion. The WG scheduler always tries to schedule WGs to a CU from its CUQ (e.g.,
CUQ 1 to CU 1), and a CU only steals a WG from another CUQ if its CUQ is empty, and it has
enough available resources for a new WG to be scheduled. We implement CUQs in the GPU’s global
memory such that the hardware overheads are minimized [57].

Compute Unit (CU): We modify/add two components in each CU: (1) the wavefront scheduler @,
and (2) the reuse monitor ). As discussed in Section 5, we use a two-level wavefront scheduler
to leverage wavefront-level data reuse. Specifically, if a child kernel is predicted to have high
parent-child data reuse, all the child wavefronts are grouped with its parent wavefront (if it is not

31664 bytes is calculated by 13 CUs with each CU has maximum 16 WGs. For each WG, we track k_id and WG_id with each
4 bytes.
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finished yet) in the same group and round-robin wavefront scheduler is applied within the group.
Note that, as the majority of child kernels are light-weight [58] (i.e., they contain few WGs and
each WG has few wavefronts), the total number of wavefronts in a child kernel is small, making
the group size relatively small.

Reuse Monitor: Whenever there is a child kernel launch from a CU, we estimate the reuse type
(i.e., parent-child, sibling-sibling, and self) of that particular child kernel. This is done through the
information obtained from the reuse monitor ) in each CU. The reuse monitor consists of three
Bloom filters, one for each type of data reuse: parent-child kernel, sibling-sibling kernel, and self
kernel reuse. Each Bloom filter is associated with two counters: number of hits and number of
misses. For each L1 cache read request, the accessed cacheline address is checked in the Bloom filter
and the corresponding counters are updated. The address is then added to the Bloom filter based
on the kernel type (e.g., only parent kernel adds to the parent-child Bloom filter and only child
kernel adds to the sibling-sibling Bloom filter). The reuse monitor predicts the child kernel to be of
parent-child reuse type if the “hit rate” of the parent-child Bloom filter is greater than a predefined
threshold, and is larger than the hit rates of sibling-sibling and self-kernel. We empirically set the
threshold to be 0.5. Similarly, for sibling-sibling and self-kernel, the reuse monitor predicts the
reuse type based on the corresponding hit rates of Bloom filters. If a child kernel is predicted to be
parent-child type or sibling-sibling type, the kernel is labeled a high-priority. Otherwise, if it is
predicted self-reuse type or no reuse, it is labeled a low-priority. We use MurmurHash2 [4] as the
hash function in the Bloom filter.

At the beginning of application execution, the very first parent kernel is launched by the host
CPU and pushed into HPQ in the GMU. Due to the lack of reuse information at the initial stage of
execution, the WGs in that parent kernel are scheduled to CU queues in a round-robin fashion for
load balance. In order for the reuse monitor to capture parent-child WG reuses, the first couple of
child kernels are launched to the HPQ and child WGs are scheduled to the same CUs where the
parent WGs execute. After this stage, further kernel launches are attached with estimated priorities
based on information from reuse monitor @. The kernel’s priority is checked at ) and is either
pushed into the HPQ or the LPQ @. When a parent kernel finishes its execution, we reset the Bloom
filters but leave the counter values unchanged. Later, when the next parent kernel starts launching
child kernels, it uses the counter information to perform the priority prediction as well as update
the counters and Bloom filters. The major hardware overheads come from the structure of Bloom
filters which are space-efficient data structures. A Bloom filter does not need to account for a lot of
entries, especially in applications that exhibit frequent data reuse, since only the misses are added
to Bloom filter and hits just update the counters. In LASER, each Bloom filter needs 605 bytes (with
1000 entries and 0.1 false positive probability). As a result, the total hardware overhead is 2 KB for
the 3 Bloom filters per CU.

7 EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of our limit study and our proposed scheduling
mechanism, LASER. We also compare against two prior efforts targeting data locality on GPUs.

Results of the limit study: The first three bars in Figure 12 show the normalized IPC across all 16
benchmarks from our limit study. The results are normalized to the baseline scheduler which uses
FCFS kernel scheduling, round-robin WG scheduling, and GTO wavefront scheduling. The first three
bars in Our limit study is a three-part study which involves an optimal locality-aware kernel sched-
uling policy(kernel), an optimal locality-aware kernel+WG scheduling policy (kernel+WG) and
finally, an optimal locality-aware kernel+ WG+wavefront scheduling (kernel+WG+wavefront).
On an average, the three policies achieve performance improvements of 2.6%, 14.3%, and 19.4%,
respectively with respect to the baseline scheduling policy. From the results, we make the following
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observations. First, for most benchmarks having high data reuses in Figure 4, such as three inputs of
BFS and both inputs of SSSP, the performance improvements are also high compared to other bench-
marks. This is because we schedule the units (i.e., kernels, WGs, and wavefronts) with high reuse
ratios close to each other during execution. Second, for applications AMR and Mandel, the results are
similar to baseline since these two applications do not have intrinsic data reuse properties. Third,
for benchmarks such as JOIN-Uniform and SA, even though we use accurate reuse information to
guide scheduling, some of the data reuse opportunities may not be achievable, especially data reuse
along the relationship of parent-child. This is primarily due to the launch overhead. Specifically,
child kernels are not available in pending kernel pool immediately after launch. Since our approach
can only choose the kernels from the pending kernel pool which contains only ready-to-execute
kernels, we fail to exploit some of the parent-child data reuses.

Note that, we do not enable throttling in any of our experimental evaluation. Throttling has been

proved to be very beneficial in reducing the cache contention [24, 31]. With throttling enabled, we
expect both, the limit study and LASER to provide better performance improvements as it reduces
the cache contention.
Evaluation of LASER: The last bar in Figure 12 shows the overall performance of LASER, nor-
malized with respect to the baseline scheduler. LASER, on an average, achieves 11.3% performance
improvement across the 16 GPU benchmarks tested. We make two observations from the results.
First, in benchmarks BFS-citation, SPMM-small, and SPMM-large, LASER performs very well
(close to the “optimal”). This is because most of the parent-child kernels pairs and/or sibling-sibling
kernel pairs have similar high reuse ratios (i.e., fall into the same bin as shown in Figure 7). As
a result, the reuse type prediction in LASER is very accurate. Second, there is still a sizable gap
between LASER and the optimal scheduler for few applications. This is due to two reasons. First, for
benchmarks such as Quicksort, SSSP-citation and SSSP-graph500, LASER fails to accurately
predict the reuse type as the kernel pairs have diverse reuse ratios in these benchmarks. For exam-
ple, the sibling-sibling pairs in Quicksort are uniformly distributed among reuse ratio bins (see
Figure 7). Second, for benchmarks such as BFS-small, Radixsort and SA, the reuse information
collection overheads (i.e., the parallelism is compromised at the initial stages of execution where
the child kernels are bound to the same CU to collect reuse information) outweigh the performance
improvements that we get with the improved data locality.

Figure 13 plots the L1 hit rates with our limit study and LASER. As can be seen, the L1 hit
rate increases by enabling hardware schedulers to be locality-aware. The L1 hit rate significantly
improves for kernel+WG scheduling. This is because that WGs with high reuses are now mapped
to the same CU to take advantage of the L1 cache unlike the scenario in kernel, where the
WGs are scheduled in round-robin. By using LASER, the L1 hit rate is within 3% of the optimal
kernel+WG+wavefront scheduler.

We next compare LASER with two prior efforts that target data locality in GPUs: OWL-locality [21]
and LaPerm [57]. OWL-locality implements a locality-aware wavefront scheduler to reduce cache
contention and improve the latency hiding capability. It enhances the two-level wavefront scheduler
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with the knowledge of the data layout to WG mapping. LaPerm, on the other hand, binds child
WGs with their direct parent WG, and schedules them on the same CU in a load balanced fashion.
Figure 14 shows the comparison of OWL-locality, LaPerm, and LASER along with the optimal
scheduling (kernel+ WG+wavefront) policy. The results are normalized to baseline scheduling. On
average, OWL-locality and LaPerm improve performance by 3.8% and 5.7%, respectively, over the
baseline, whereas LASER provides 11.3% performance improvement. In summary, DP applications
are generally complicated in data access pattern and have data reuses along different types of
kernel/WG relationships. As a result, simply co-locating neighboring WGs (as in OWL-locality) or
binding parent-child WGs (as in LaPerm) does not fully exploit the data reuse.

8 CONCLUSIONS

Dynamic parallelism is an effective approach for improving GPU performance and resource utiliza-
tion when executing irregular applications. While there have been prior efforts focusing on resource
management and overhead tolerance for dynamic parallelism, the data access patterns and data
reuse remain unclear. In this paper, we systematically characterize the data reuse and data locality
opportunities that exist in dynamic parallel GPU applications. Based on our observations, we con-
duct a limit study to show the performance benefits of an “optimal” scheduler that realizes as much
data reuse as possible. Furthermore, we propose a practical locality-aware scheduler, called LASER,
which makes the GPU hardware schedulers locality-aware, and thus improves data reuse. Our
experimental evaluations show that, on an average, 19.4% and 11.3% performance improvements
can be achieved with an optimal scheduler and LASER, respectively.
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