
Enhancing Address Translations in Throughput Processors via
Compression

Xulong Tang
University of Pittsburgh

Pittsburgh, Pennsylvania, USA
tax6@pitt.edu

Ziyu Zhang
University of Pittsburgh

Pittsburgh, Pennsylvania, USA
ziz41@pitt.edu

Weizheng Xu
University of Pittsburgh

Pittsburgh, Pennsylvania, USA
wex43@pitt.edu

Mahmut Taylan Kandemir
The Pennsylvania State University
University Park, Pennsylvania, USA

mtk2@cse.psu.edu

Rami Melhem
University of Pittsburgh

Pittsburgh, Pennsylvania, USA
melhem@cs.pitt.edu

Jun Yang
University of Pittsburgh

Pittsburgh, Pennsylvania, USA
juy9@pitt.edu

ABSTRACT

Efficient memory sharing among multiple compute engines plays
an important role in shaping the overall application performance
on CPU-GPU heterogeneous platforms. Unified Virtual Memory
(UVM) is a promising feature that allows globally-visible data struc-
tures and pointers such that the GPU can access the physical mem-
ory space on the CPU side, and take advantage of the host OS paging
mechanism without explicit programmer effort. However, a key
requirement for the guaranteed performance is effective hardware
support of address translation. Particularly, we observe that GPU ex-
ecution suffers from high TLB miss rates in a UVM environment, es-
pecially for irregular and/or memory-intensive applications. In this
paper, we propose simple yet effective compression mechanisms
for address translations to improve GPU TLB hit rates. Specifically,
we explore and leverage the TLB compressibility during the exe-
cution of GPU applications to design efficient address translation
compression with minimal runtime overhead. Experimental results
across 22 applications indicate that our proposed approach signifi-
cantly improves GPU TLB hit rates, which translate to 12% average
performance improvement. Particularly, for 16 irregular and/or
memory-intensive applications, the performance improvements
achieved reach up to 69.2%, with an average of 16.3%.

CCS CONCEPTS

·Computer systems organization→ Single instruction, mul-

tiple data; Heterogeneous (hybrid) systems.

KEYWORDS

CPU-GPU heterogeneous system; unified virtual memory; TLB;
performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PACT ’20, October 3ś7, 2020, Virtual Event, GA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8075-1/20/10. . . $15.00
https://doi.org/10.1145/3410463.3414633

ACM Reference Format:

Xulong Tang, Ziyu Zhang, Weizheng Xu, Mahmut Taylan Kandemir, Rami

Melhem, and Jun Yang. 2020. Enhancing Address Translations in Through-

put Processors via Compression. In Proceedings of the 2020 International Con-

ference on Parallel Architectures and Compilation Techniques (PACT ’20), Oc-

tober 3ś7, 2020, Virtual Event, GA, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3410463.3414633

1 INTRODUCTION

The ever-increasing complexity of emerging applications has pushed
for a florescence of heterogeneous computing platforms that com-
prise heterogeneous processing elements such as GPUs, FPGAs, and
other types of accelerators. The CPU-GPU system, as a ubiquitous
and widely-adopted platform, has gained momentum in various ap-
plication domains such as deep learning [52, 68], high-performance
scientific computing [33], bio-medical applications [13, 23], and
computer vision [18].

Traditional CPU-GPU system organizes CPUs and GPUs in a
łmaster-slavež execution model. Such organization suffers from two
limitations. First, it requires significant programmer effort to ex-
plicitly manage the data transfers between the host CPU and the
GPU device. Second, the limited capacity of GPU memory forbids
memory-intensive applications to take full advantage of GPU ex-
ecution. Unified Virtual Memory (UVM), supported by vendors
such as NVIDIA [35] and AMD [4], is a promising feature that
allows globally visible data structures and pointers so that the GPU
can access the physical memory space on the host CPU side, and
take advantage of the host OS paging mechanism without explicit
programmer management. This feature is especially beneficial for
the deployment of complex applications whose memory footprints
exceed the modern GPU memory capacities [26, 71].

While UVM is certainly promising, one of the key factors that
affect the delivered performance of UVM is the efficiency of the
address translation support. Specifically, memory accesses need
to go through a multi-step address translation process, including
multi-level TLB lookups and multi-level page table walks in order
to get the physical address of required data. Recent work has shown
that the address translation overheads can take up to 50% of the
application execution time [9, 11, 25]. These overheads are more
significant in GPUs where TLB miss rates (at both L1 and L2 levels)
are generally much higher compared to CPUs [46, 50]. This is due to
the intensive and divergent memory requests (even after coalescing)

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

191

https://doi.org/10.1145/3410463.3414633
https://doi.org/10.1145/3410463.3414633

that originate from the GPU SIMT execution. Given the fact that
a TLB miss is significantly expensive compared to a data cache
miss [50], a high TLB miss rate can easily hinder the memory
system from feeding the GPU computing engines with the required
data in a timely fashion, leading to severe under-utilization and
eventually performance degradation.

Previous works have focused on improving TLB hit rates from
multiple angles, including contiguity-based range TLBs [25, 69],
cluster TLBs [42, 44], employing large pages [5, 36, 45] , and eager
paging [9, 22]. While these techniques effectively reduce the num-
ber of TLB misses and increase the TLB reach, they are ill-suited
for GPUs. First, large pages suffer from internal memory fragmen-
tation [30]. Besides, UVM transfers physical pages between CPU
memory and GPU memory using on demand paging policy [34].
As transferring large pages incurs more data movements, they are
only used cautiously in, e.g., evicting pages out of an almost full
memory [9]. Second, GPU TLBs receive much higher TLB miss
rates compared to CPU TLBs due to the nature of SIMT execution
where intensive and divergent memory accesses are generated from
multiple warps that run concurrently. Third, exploiting continuity
of page accesses is difficult in GPUs. On the one hand, continuity
requires daemon thread and OS support to swap physical pages
and generate continuity in physical memory space [37, 69]. This
is particularly inefficient in GPUs since it requires batching the
page swapping requests, sending them to CPUs, and interrupting
CPUs to handle the physical page swaps [3]. On the other hand,
our characterization reveals that most of the GPU page accesses
are non-consecutive accesses where stride between two consecutive
requested pages usually varies during the course of execution (i.e.,
there does not exist a unified stride). Finally, the CPU oriented clus-
ter TLBs [42, 44] are proposed based on the similar observation of
clustered access patterns. However, such CPU-oriented approaches
are not effective in handling large stride accesses, which are quite
frequent in GPU execution. Therefore, these approaches result in
fewer benefits and cause expensive hardware overheads to maintain
the metadata in GPUs. In sum, it is important to leverage the unique
GPU memory access characteristics and develop corresponding ad-
dress transition optimizations in order to improve the performance
of UVM in CPU-GPU platforms. Table 1 summarizes the pros and
cons of the prior techniques focusing on TLB optimizations.

In this paper, we propose a simple yet effective and efficient
TLB compression strategy to address the poor TLB performance in
GPUs. Our approach is based on the observation that, during the
execution of a GPU application, rather than showing continuity
(i.e., with a stride of 1) among the accessed pages, those pages show
clustered patterns in a periodic fashion. That is, for a given execution
period, the accessed pages are close to each other in the address
space. This observation also holds true for irregular applications
with scattered memory access patterns. As a result, both the virtual
page number (VPN) and the physical frame number (PFN) in the
address translations of these accesses have a number of identical
bits (i.e., the upper bits of the addresses, both virtual and physical,
are identical among these accesses). Based on this observation,
we propose hardware-supported address translation compression
mechanisms to eliminate the redundant address bits in the TLB
entries. Specifically, we adopt ⟨base, δ⟩ compression where, instead
of maintaining all bits of VPN and PFN in a TLB entry, multiple

VPNs and PFNs are stored in one TLB entry in their δ format.
The bases are stored separately in hardware registers. We also
propose parallel compression and decompression procedures where
the overheads of compression are effectively hidden by overlapping
them with normal TLB operations. The main contributions are as
follows:

•We conduct an in-depth characterization of modern GPU appli-
cations in a UVM environment. We observe that i) most GPU
applications suffer from low TLB hit rates and improving TLB hit
rates has significant impact on the overall application performance,
ii) GPU page accesses exhibit non-consecutive but clustered ac-
cess patterns during certain execution periods, and iii) there are
significant number of identical bits in the VPNs (as well as PFNs)
of those clustered pages, and those bits are redundantly stored in
the TLB.

•We propose a TLB compression mechanism built upon the base-
δ compression to improve the TLB reach and TLB hit rates by
allowing multiple address translations to be stored in the same
TLB entry. Our approach eliminates the identical bits (as bases)
and only maintains the differences (as δs) in the TLB. Meanwhile,
we propose parallel compression and decompression mechanisms
where the overheads of our compression scheme can be effectively
hidden by overlapping them with normal TLB operations. We
also propose a partitioned TLB design to accommodate execution
scenarios where the translations are non-compressible.

•We thoroughly evaluate our proposed approach using 22 appli-
cation programs from various benchmark suites. Experimental
results indicate that our approach effectively improves TLB hit
rate. These enhanced TLB hit rates translate to average 12% per-
formance improvements across all 22 application programs. In
particular, for 16 irregular and/or memory-intensive applications,
the performance improvements reach up to 69.2%, with an average
of 16.3%.

2 BACKGROUND

2.1 Unified Virtual Memory (UVM)

UVM is a promising feature adopted in commercial heterogeneous
platforms, especially CPU-GPU systems, to reduce the programmer
burden on explicit data transfer and management [4, 35]. UVM
allows globally-visible pointers and data structures such that the
explicit memory copy is no longer required. As a result, it signif-
icantly simplifies GPU programming and relieves programmers
from fine-grained data movement management. It also enables ap-
plication kernels with a large working set to be deployed on GPUs,
and allows GPU kernels to benefit from OS managed paging system.
At runtime, the on-demand paging mechanism migrates memory
pages from CPU to GPU and vice versa, which allows data transfers
between CPU and GPU at page granularity.

However, UVM is not free. Accessing CPU memory pages from
the GPU side is expensive compared to accessing the pages in the
GPU local memory. The cost comprises not only the overhead of
page migration, but also the overhead of address translation. Specif-
ically, the performance of hardware support of UVM relies on the
translation of virtual address to physical address for all GPU data
accesses. While there are very few publicly available documents

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

192

Table 1: Comparison with prior techniques.

Techniques No OS No HW Continuous Irregular Stride No internal Suitable in
changes changes accesses accesses accesses fragmentation CPU-GPU

Range TLB [25, 37, 69] ✗ ✓ ✓ ✗ ✗ ✓ ✗

Cluster TLB [42, 44] ✓ ✗ ✓ ✗ ✗ ✓ ✗

Large page [5, 36, 45] ✗ ✗ ✓ ✗ ✗ ✗ ✗

Eager paging [9, 22] ✗ ✗ ✓ ✗ ✓ ✗ ✗

Speculative TLB [8] ✗ ✗ ✓ ✗ ✓ ✓ ✗

Our approach ✓ ✗ ✓ ✓ ✓ ✓ ✓

SM

SM

GPU

SM

Coalescing

Shared L2
cache

Shared page table walker

L1 TLB L1 $

Shared L2
TLB

1

2

3

4

Interconnect network (NoC)

Fetch / Decode

Register File

SIMD
lanes

Scratch
pad

Main Memory

5

6

Way 0 Way 1 Way N

set 1

Virtual address

Virtual page
number (VPN)

Page
offset

Shared
L2 TLB

12

3

TLB
index

Tag PFNv/d Tag PFNv/d Tag PFNv/d

set 2

set 3

set m

Mux

Physical
address

Physical frame
number (PFN)

Page
offset

C
o

m
p

a
re

C
o

m
p

a
re

C
o

m
p

a
re

Hit/Miss

Figure 1: Baseline GPU architecture and L2 TLB lookup pro-

cedure.

12 bits

Virtual page tag (VPT)

31 bits

12 bits

Physical frame number (PFN)

19 bits

Virtual address

Physical address

31 bits

VPTv/d PFN

19 bits
TLB entry

5 bits

2

bits

TLB

Index

Page

offset

Page

offset

Figure 2: Address format and the content of the TLB entry

in the baseline architecture.

regarding the TLB organization in commercial GPUs, a widely-
adopted design is to allow the GPUs to have its own TLB hierar-
chy and page table walkers [50], similar to the CPU MMU design.
Such design can effectively reduce the address translation overhead
with a good TLB performance (hit rate). Another design employs
IOMMU [3, 21], where a separate IO TLB hierarchy is maintained
in IOMMU. In this design, the address translation requests that
miss in the last-level GPU TLB are sent, within Address Translation
Service (ATS) packages, over PCI-e, to IOMMU for IO TLB lookup
and page table walk. In both the designs, address translations that
miss the GPU TLB incur significant delays, leading to performance
degradation.

2.2 Baseline Architecture

Figure 1 shows the targeted GPU architecture, as well as typical
GPU data access flow with address translation. A GPU consists of
multiple SMs that are connected through an on-chip network1. Each
SM consists of a private L1 TLB to cache the page table entries close
to execution units. In our baseline architecture, we adopt a virtually-
indexed and physically-tagged (VIPT) data cache such that the TLB

1In this paper, we use streaming multiprocessor (SM) from NVIDIA terminology and
compute unit (CU) from AMD terminology interchangeably.

lookup and the data cache lookup happen in parallel. Note that,
before TLB and cache lookup, the memory accesses are coalesced
by per-SM coalescing unit to reduce the number of outstanding
memory requests. L2 TLB and L2 data cache are partitioned and
placed after the on-chip interconnect. Both L2 TLB and L2 data
cache are shared across all SMs.

During execution, the data accesses generated by GPU warps are
first coalesced by the coalescing engine, which combines accesses
to the same cacheline (1). After getting the coalesced address, the
GPU load-store unit schedules an L1 TLB lookup to see whether
the translation is cached or not (2). Note that, the L1 cache lookup
happens in parallel in VIPT data cache. If the translation lookup
returns a TLB hit, the corresponding data cache lookup uses the
physical page frame number (PFN) to compare with the data cache
tag and determine whether the memory access is a data cache hit
or not. If the lookup misses in the L1 TLB, the translation request
is forwarded to the shared L2 TLB (3). If the L2 TLB lookup also
misses, the translation request invokes a page table walker thread to
perform page table walk (4). Since a page table is typically built as
multiple levels, this page table walking process involves multiple
memory accesses, which are very time consuming [5]. After the
page table walk, the completed translation is sent back to the L2
TLB (5) and further sent back into the L1 TLB in an inclusive TLB
hierarchy (6). Then, the memory access request is replayed, and an
L1 TLB hit is returned.

Figure 1 also depicts the traditional process for L2 TLB lookup.
The virtual address of memory access is partitioned into virtual page
number (VPN) and page offset. Considering an N-way associative
L2 TLB, the lower bits of the VPN are used as index to determine the
set in the TLB (1). The upper bits of the VPN are then compared
against the tag for determining TLB hit/miss (2). If it is a TLB
hit, the corresponding PFN is concatenated with the page offset
to form a physical address (3). Otherwise, a TLB miss occurs and
the memory request is sent to page table walk queue for page table
walk. Note that, although we use shared L2 TLB as a discussion
example, the per-SM private L1 TLB share the same data structure
and the lookup procedure as L2 TLB. The only difference between
L1 and L2 is the capacity and the associativity.

Figure 2 shows the virtual address to physical address mapping as
well as the contents of a particular TLB entry. The virtual address
consists of a 36 bits VPN and 12 bits page offset (i.e., 4KB page
size) where the lower 5 bits of the VPN (in a 512 entry, 16-way
associativity TLB) are used for TLB set indexing. The upper bits
of the VPN (31 bits) excluding the indexing bits are called virtual
page tags (VPTs), and are used to compare with the VPTs in the
TLB. Each TLB entry also consists of a valid bit and a dirty bit.

Our proposed approach in this paper is built upon the base-δ
compression [41]. The key observation behind is that, for many

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

193

0
0.2
0.4
0.6
0.8

1
1.2

sp
m

v
m

st

hea
rt
w
al

l
bh

pag
e_

ra
nk

sr
ad fw m

is

co
lo

r

hots
pot

dw
t

km
ea

ns
bfs

2d
co

nv

st
en

ci
l

bac
kp

ro
p

pat
hfin

der
m

vt nw
bic

g
at

ax bc
av

g

H
it

 r
a
te

L1 TLB L2 TLB

Figure 3: L1 TLB hit rate and L2 TLB hit rate in the baseline

executions.

translation requests, the values in VPNs (and PFNs) stored in TLB
entries have a low dynamic range: i.e., the relative difference be-
tween values is small. Therefore, base-δ compression allows us
to only store the value differences in TLB entries, instead of the
original values of VPNs and PFNs. As a result, the number of bits
that need to be maintained in TLB is significantly reduced.

3 MOTIVATION AND CHARACTERIZATION

3.1 Application Programs

Table 2: List of benchmarks.

Name Cat. TLB Name Cat. TLB

spmv [57] C, I (H,H) mst [28] M, I (H,H)
heartwall [15] C, R (H,H) bh [28] M, I (L,H)
page_rank [14] C, I (L,H) srad [15] C, R (L,H)
fw [14] M, I (L,H) mis [14] C, I (L,H)
color [14] M, I (L,H) hotspot [15] C, R (L,L)
dwt [15] C, I (L,L) kmeans [15] M, I (H,L)
bfs [15] M, I (L,L) 2dconv [20] C, R (H,L)
stencil [57] C, R (L,L) backprop [15] C, R (H,L)
pathfinder [15] M, R (L,L) mvt [20] C, I (L,L)
nw [15] M, I (L,L) bicg [20] C, I (L,L)
atax [20] M, I (L,L) bc [14] C, I (L,L)

Table 2 summarizes the important characteristics of the bench-
marks we selected from various suites. Specifically, we choose 22
benchmarks from Pannotia [14], Poly [20], Rodinia [15], Lones-
tar [28], and Parboil [57]. These benchmarks cover different cate-
gories: (C) compute-intensive, (M) memory-intensive, (R) regular
applications, and (I) irregular applications. For graph applications,
we use real-world author citation network graphs [54]. For other
benchmarks, We use the largest input data sets that are available
in the benchmark suites. We use speedup as our main metric to
measure the performance variations. We define speedup as the ratio
of the execution time of the baseline execution to the execution
time of our proposed configurations.

3.2 Baseline Configuration

Table 3: Baseline Configuration.

Module Configuration

GPU config 16 SMs, 1400MHz, 5-stage pipeline
Resource 48KB Shared Memory, 64KB Register File,
per SM Max.2048 threads (64 warps, 32 threads/warp)

16 KB, 4-way L1, 12KB 24-way Texture Cache, 8KB 2-way
Constant cache, 2KB 4-way L1 I-cache, 128B cacheline

L2 unified 128KB/Memory Partition, 1536KB Total Size,
cache 128B cacheline, 8-way associativity
Schedule Greedy-Then-Oldest (GTO) [51] dual warp schedule

Round-Robin (RR) thread block scheduler
TLB L1: 32 entries, 4-way, 1-cycle lookup latency, SM private
Config L2: 512 entries, 16-way, 10-cycle lookup latency, SMs shared
Page table walk 8 shared page table walker, 500-cycle latency

0

0.2

0.4

0.6

0.8

1

2^
2

2^
3

2^
4

2^
5

2^
6

2^
7

2^
8

2^
9

2^
10

2^
11

2^
12

2^
13

2^
14

2^
15

2^
16

2^
17

2^
18

C
D

F

Page Reuse Distance

bfs/ heartwall/ nw/

L1 TLB miss L2 TLB miss

Figure 4: Cumulative distribution function (CDF) of page

reuse distances. The x-axis represents the reuse distance in

power of 2.

We use a cycle-accurate simulator (gem5-gpu [49]) to conduct
our characterizations and later to evaluate our proposed TLB com-
pression mechanism. gem5-gpu is a simulation environment fea-
tured with UVM between CPU host and GPU device. We modify
the simulator to model the modern NVIDIA Kepler architecture.
Table 3 shows the detailed baseline configuration of our simulation
environment. For the organization and timing latency of TLBs and
page table walker that are not publicly available, we adopt the con-
figuration parameters from the recently published works [5, 6, 50].

3.3 GPU TLB Characterization

Figure 3 plots the TLB hit rates (both L1 and L2) in baseline execu-
tion. From these results, one can observe that memory-intensive
applications with irregular execution behaviors suffer from low
TLB hit rates. This is because, even after memory coalescing, a
large number of distinct memory pages are being accessed by the
concurrent executing warps, leading to severe TLB thrashing. We
further observe that different benchmarks show different hit rates
in different TLB components. For example, spmv has high hit rates
in both the L1 TLB and L2 TLB, whereas atax has low hit rates in
both TLBs. In comparison, bh exhibits a low hit rate at L1 TLB but
a high hit rate at the L2 level. In fact, based on the results in this
Figure 3, we can classify the benchmarks into four categories: 1)
high L1 and high L2, 2) high L1 and low L2, 3) low L1 and high L2,
and 4) low L1 and low L2. We empirically decide using 75% hit rate
as the łthresholdž to determine between high hit rate and low hit
rate. The TLB column in Table 2 shows our classification.

Figure 4 presents the page reuse distances of three representa-
tive benchmarks (bfs, heartwall, and nw). Specifically, bfs is an
irregular benchmark (because of the input graph), hearwall is
a compute-intensive benchmark, and nw is a memory-intensive
benchmark. In this paper, we define the page reuse distance as
the number of distinct pages accessed between two accesses to
the same page. We also draw the L1 TLB and L2 TLB compulsory
misses in the figure. As one can observe, different benchmark pro-
grams have different page reuse distances. For those benchmarks
with a large number of pages that are reused in large distances,
the corresponding TLB hit rates are very low. For instance, most
of the pages accessed by nw have large reuse distances (more than
60% of the reuses have a distance more than 512 pages), leading
to poor TLB hit rates in both L1 and L2 (as shown in Figure 3). In
contrast, heartwall experiences high hit rates in both L1 TLB and
L2 because of its short page reuse distances (about 85% page reuses
have distances less than 32 pages).

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

194

21 37

0

2

4

6

8

10

sp
m
v
m
st

he
ar
tw
al
l
bh

pa
ge
_r
an
k
sr
ad fw m

is

co
lo
r

ho
ts
po
t
dw
t

km
ea
ns bf

s

2d
co
nv

st
en
ci
l

ba
ck
pr
op

pa
th
fin
de
r
m
vt nw

bi
cg
at
ax bc av

g

N
o
rm
a
li
z
e
d

p
e
rf
o
rm
a
n
c
e

L1 L2 Ideal

Figure 5: Impact of TLB misses on performance.

Figure 6: Virtual pages accessed during the execution of

benchmark dwt. The X-axis shows the timeline, and the Y-

axis gives the virtual page number offsets from the page

number 0x2aaab6dae.

To quantify the impact of the L1 and L2 TLB hit rates on per-
formance, we conduct a study to measure performance gains if
their miss penalties (latencies) are removed. Figure 5 shows the
speedups normalized to baseline execution. Removing both L1 and
L2 TLB miss penalty (denoted by ‘ideal’) is equivalent to having
an ideal TLB hierarchy on chip. Removing only one level of TLB
miss penalty (‘L1’ or ‘L2’) measures their individual impact on
performance. Note that, removing the L1 miss penalty does not
imply ideal L1 TLB. It just removes the latency for those translation
requests that miss in L1 TLB but hit in L2 TLB. However, for those
requests misses both L1 and L2 TLBs, we still keep the L2 TLB miss
penalty. It can be seen from the figure that, eliminating L1 TLB
miss penalties has relatively minor improvement on performance
if these misses can still hit in L2 TLB. The major penalty involved
in these misses is the on-chip interconnect round trip time (as the
requests can hit in L2 TLB), which can be effectively hidden by the
GPU warp scheduling.

On the contrary, eliminating L2 TLB miss penalties can signifi-
cantly improve performance, especially for the memory-intensive
and/or irregular benchmarks. We observe speedups ranging from
3.1% to 21.3×, with an average of 3.2× across all benchmark pro-
grams. Finally, the ideal TLB hierarchy achieves 6.9% to 37.5×
speedup, with an average of 3.5×, demonstrating the importance
of TLB behavior to the overall kernel performance.

Considering the results from this study, we can conclude that,
there exists a significant potential to improve application perfor-
mance by improving the TLB hit rates. In particular, optimizing
the L2 TLB can significantly improve the overall performance, as
the L2 TLB misses involve multi-level page table walks, which are
extremely expensive. Therefore, in the rest of this paper, unless
otherwise stated, our optimization focuses on the shared L2 TLB.

3.4 TLB Compressibility

Our goal in this paper is to improve TLB hit rates. To achieve the
goal, we leverage GPU execution characteristics. That is, during
application execution, the memory pages being accessed show clus-
tered patterns periodically. To be more concrete, during certain
execution period, the GPU kernel intensively generates memory
accesses concentrated on a subset of, and often nearby memory
pages. This is because, in the GPU SIMT execution model, there ex-
ist spatial data reuses at multiple granularities (e.g., among threads
within a warp, among warps within a thread block, and among
thread blocks within a kernel). To illustrate such a clustered access
pattern, Figure 6 plots the data access pattern ś over time ś of
dwt from the Rodinia benchmark suite [15] as an example. In this
plot, the x-axis represents the timeline, and the y-axis represents
the virtual page number in an offset format (i.e., the page offsets
from the virtual page number (0x2aaab6dae)). Each data point in
the figure corresponds to one page access that is generated from
the GPU load-store unit. As one can observe, there exists a clus-
tered page access pattern during different execution phases. At the
beginning phase (cycles 17×106 to 19.1×106), four data structures
are initialized by the initialization kernel in dwt. Then, computing
kernels are launched sequentially after the initialization. Note that,
though each kernel accesses different pages, the accessed pages
by a particular kernel are clustered. We also zoom in one kernel
execution and show its results. From the figure, we observe that i)
at a specific execution cycle, there can be multiple accesses to dif-
ferent pages, and ii) pages being accessed over time show clustered
patterns. It is also important to note that, though the pages being
accessed are nearby from each other in the address space, the stride
between subsequently accessed pages varies and is not necessarily
one page. In fact, we observe that the subsequently accessed pages
rarely show continuity (stride 1) in GPU execution.

Based on these observations, we leverage the clustered data
access patterns to explore TLB entry compression. The key idea
behind our approach is to exploit the translation similarity where
the VPTs and PFNs in the TLB at a certain execution period have a
large number of identical bits. These identical bits can be removed
so that each TLB entry can accommodate more translations. To
explore TLB compressibility, we conduct a characterization with the
goal of demonstrating the similarity among translations in terms of
the number of identical bits in VPNs and PFNs. We achieve this by
taking a snapshot of the L2 TLB contents at every 10k cycles, during
the execution of a benchmark. In each snapshot, we randomly pick
up one TLB entry and use its VPT and PFN as the bases for the
remaining TLB entries to calculate the łdifferencesž (δs). For each
δ , we determine the number of bits required to represent that δ ,
and take the average number of bits across all snapshots of that
benchmark. Figure 7 shows the collected results. In this plot, the
x-axis represents the number bits required to represent a δ , and the
y-axis shows the CDF distribution of the number of translations in
L2 TLB. In the interest of space, we choose to show 8 representative
benchmarks. One can make the following main observations from
these results:
Observation 1: Compared to the VPT (31 bits) and the PFN (19
bits) in the baseline case, the number of bits required by δs is
significantly less for both VPTs and PFNs across all benchmark

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

195

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 1113151719212325272931

C
D

F

Number of bits

dwt

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 1113151719212325272931

C
D

F

Number of bits

mst

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 1113151719212325272931

C
D

F

Number of bits

mvt

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 1113151719212325272931

C
D

F
Number of bits

stencil

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 1113151719212325272931

C
D

F

Number of bits

pathfinder

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 1113151719212325272931

C
D

F

Number of bits

mis

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 1113151719212325272931

C
D

F

Number of bits

color

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 1113151719212325272931

C
D

F

Number of bits

2dconv

Virtual page tags (VPTs) Physical frame numbers (PFNs)

Figure 7: CDF of the average number of translations (both VPTs and PFNs) in L2 TLB (y-axis), whose differences can be repre-

sented by x number of bits (x-axis).

programs. For instance, in benchmark color, around 80% of VPTs
and 46% of PFNs, on average, in L2 TLB have δ values that can be
represented using 7 bits and 9 bits, respectively.
Observation 2: There exist uncompressible VPTs or PFNs where
the δ values require a similar number of bits compared to original
VPT and PFN. For instance, 6% VPTs in mis requires 29 bits to
represent the δ values.
Observation 3: Applications such as mst show interesting results
where 45% of VPTs can be compressed and 55% of VPTs are un-
compressible. The reason behind this behavior is that multiple
warps/thread blocks work on different data structures allocated
from different memory segments. This interesting observation mo-
tivates us to have a partitioned TLB design, which will be discussed
in detail shortly.

4 OUR APPROACH

4.1 Design Challenges

Our goal in this paper is to i) increase TLB hit rates by leveraging
the aforementioned TLB compressibility, and ii) design efficient
and effective compression and decompression procedures with
minimal hardware overheads. To this end, we develop a hardware-
supported TLB compression mechanism that takes advantage of
TLB compressibility and dynamically merges multiple TLB entries
into fewer TLB entries. Our approach divides address translations
(both VPTs and PFNs) into ⟨base, δ⟩ formats, and only maintains
the δs in the TLB entries. As a result, each single TLB entry can
accommodate δs frommultiple translations. Compared to enlarging
the TLB capacity which increases both TLB lookup time as well as
its on-chip area overhead [53], our approach is more scalable and
increases the TLB reach without enlarging the TLB capacity.

However, implementing an effective and efficient dynamic TLB
compression mechanism is non-trivial. There are several challenges.
First, it is important to select appropriate base addresses such that
the compressibility can be maximized (i.e., minimized δ values).
The base address should also be dynamically selected to capture the
periodic execution patterns. Second, it is crucial to perform TLB
compression dynamically without introducing significant runtime
latencies to the critical paths of data accesses. That is, the compres-
sion and decompression procedures, ideally, should overlap with
normal TLB operations so that the compression overheads could
be hidden. Third, extra TLB misses can occur if all TLB entries

TLB lookup

Compressible?

Compressed

entries

Uncompressed

entries

TLB

Virtual Addr

Compression

metadata

hit/miss

TLB insertion

Virtual Addr Physical Addr

n

y

Figure 8: High level overview of our proposed approach.

are made compressible, without any accommodation for uncom-
pressible translations. This is because there are uncompressible
translations, as we observed in our characterization (Section 3.4).
Therefore, the proposed mechanism needs to handle both compress-
ible and uncompressible translations. Finally, the proposed TLB
compression should involve minimum hardware overheads and
should be much cheaper and more scalable than simply increasing
the TLB size.

Motivated by these challenges, we design a hardware-assisted
TLB compression mechanism to increase the TLB hit rate by en-
hancing the TLB reach. Figure 8 shows the high-level view of our
approach. Using L2 as an example, the TLB is split by ways into
uncompressed partition and compressed partition. The compressed
partition is associated with structures to maintain the compres-
sion metadata. Upon a TLB lookup, both compressed entries and
uncompressed entries are searched simultaneously to check for a
hit. If there is a hit in the uncompressed partition, the execution is
identical to the baseline. If there is a hit in compressed partition,
the decompression procedure retrieves the base from metadata and
the δ from TLB entry, to form a valid PFN (Section 4.4). If there is a
miss, on the other hand, the request is sent for a page table walk.
Upon a TLB insertion, the compression procedure inserts deltas
to the compressed TLB entry if the translation is compressible
(Section 4.3).

4.2 Compressed Format

Figure 9 depicts the compressed format of both virtual addresses
and physical addresses. The figure also shows the contents in a
compressed TLB entry. Specifically, the virtual page tag (VPT) is
partitioned into an 18-bit virtual page base (VPB), and a 13-bit
virtual page delta (VD). The number of bits used to represent δs are

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

196

Page

offset

12 bits13 bits

Virtual page

delta (VD)
Virtual page

Base (VPB)

18 bits

Page

offset

12 bits9 bits

Physical page

delta (PD)

Physical page

base (PPB)

10 bits

Virtual address

Physical address

13 bits

VDv/d

2

bits

PD

9 bits 13 bits

VD PD

9 bits
Compressed

TLB entry

5 bits

TLB

Index

2

bits

v/d

Figure 9: Compressed format of the translation and contents

of a compressed TLB entry.

pre-determined by our observations from the characterization study
presented earlier in Section 3.4. Specifically, we find that 13 bits are
sufficient to represent the δs of clustered pages in most benchmarks.
Similarly, the PFN is partitioned into a 10-bit physical page base
(PPB) and a 9-bit physical page delta (PD). In the current design,
each original TLB entry can hold two δs of compressed translations.
That is, our compression ratio is 2. The compressed TLB entry
also needs additional bits to maintain the metadata (e.g., valid/dirty
bits) for each compressed translation separately. Note that, choosing
between different numbers of bits for δs leads to a trade-off between
compressibility and compression ratio. Specifically, a large number
bits for δs can have more translations compressed but requires
more bits to be stored in the TLBs, leading to a low compression
ratio. On the other hand, a small number of bits for δs can increase
the compression ratio but leads to fewer compressible pages. Later,
we provide sensitivity results with different number bits used for
δs.

4.3 Compression

Figure 10 shows the TLB compression procedure. Though we use
shared L2 TLB for illustrative purposes, the compression procedure
is applicable to L1 TLB as well, but we leave its discussion to Sec-
tion 4.7. The compression metadata structure consists of virtual
base registers (VBRs) and physical base registers (PBRs), to main-
tain the base VPNs and base PFNs. In our current design, each TLB
set has one corresponding VBR and one PBR that are responsible
for the compressed translations in that set. Later, in Section 4.6,
we discuss different design options where multiple sets can share
the same VBR and PBR. TLB compression happens during TLB
insertion when the VPN to PFN mapping is retrieved through a
successful page table walk. The virtual page tag and the physical
page number are split into ⟨VPB, VD⟩ and ⟨PPB, PD⟩, respectively
(1). The TLB index bits in the VPN are used to index the VBRs and
PBRs (2a). Note that, the TLB index bits are also used to index the
TLB set in parallel (2b). Then, both the VPB and PPB are compared
with the corresponding base addresses in VBR and PBR (3). If the
address is compressible, that is, if the VPB matches the base address
in VBR and the PPB matches the base address in PBR, the trans-
lation is inserted into the compressed entry in the particular set
indexed by the TLB index bits (4a). Otherwise, the translation is
non-compressible and is inserted into the uncompressed entry in
that set (4b), where each entry holds only one translation, as in the
baseline TLB.

Note that, it can happen that a particular TLB partition (i.e.,
compressed or uncompressed) is full during TLB insertion, and
the eviction of entry is required. To allow eviction on both com-
pressed partition and uncompressed partition, we have separated

way-0

Virtual

address

VPT

Page

offset

VPB 1

TLB

index

VD

Physical

address

Physical frame

number (PFN)

Page

offset

PPB 1 PD

Re-basing
counters

way x

set 1

VPT PFNv/d VPT PFNv/d

set 2

set 3

set m

Uncompressed entries

way x+1
VD PDv/d VD PDv/d

way n
VD PDv/d VD PDv/d

Compressed entries

2b

3

2a

Virtual

base

registers

(VBRs)

Physical

base

register

(PBRs)

4a4b

LRU LRUfull ? full ?5b 5a

a

b

Figure 10: Compression procedure.

the eviction policy (LRU in our case) for compressed partition and
uncompressed partition. That is, a compressed translation only trig-
gers the eviction of another compressed translation in the set, and
it will not affect the uncompressed partition. The eviction process
of either an uncompressed or a compressed entry is similar to an
eviction in the baseline, where the LRU algorithm evicts the least
recently used entry and uses the slot to store the newly-arrived
translation (5a and 5b).

4.4 Decompression

TLB decompression happens upon TLB lookup and is more critical
compared to compression as it is on the critical path of memory
access. Therefore, we need to develop an efficient and dynamic
decompression mechanism such that it does not add significant
extra latencies to data accesses. Figure 11 depicts the required addi-
tional hardware support as well as the decompression procedure
for L2 TLB. When a translation request is received, the TLB index
bits in the VPN are used to index both the TLB entries and the
VBRs (6). When a set is determined, three lookups/comparisons
are conducted in parallel. First, the VPB in the VPN is compared
with the corresponding base in the VBR (7c); second, the VPT is
compared with the tags in the uncompressed TLB entries (7a); and
third, the virtual δ is compared with the δs in the compressed TLB
entries (7b). After the parallel lookups, several scenarios may occur.
First, if the VPT matches the tag in an uncompressed entry, a TLB
hit is said to occur, and the uncompressed PFN is retrieved from
the TLB entry (8a). After that, the PFN is concatenated with the
page offset to form a valid physical address (9a). Second, if the VPT
matching fails but the VPB matches with the base in the VBR, the
virtual δ lookup determines whether the address translation hits
in the compressed TLB set or not. As we have already looked up
the virtual δ in parallel (7c), the TLB hit/miss status returns imme-
diately following the VPB and VBR comparison (8b). If it is a TLB
hit, the PPB is retrieved from the PBR and is concatenated with the
physical δ retrieved from the compressed TLB entry to form a valid
PFN, and the PFN is concatenated with the page offset to form the
requested physical address (9b). Third, if the VPT matching fails
and the VPB comparison fails or the virtual δ matching fails, a TLB
miss occurs in the compressed entries. A TLB miss is handled the
same way as in the baseline case which involves a page table walk.

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

197

way-0

Virtual

address

VPT

Page

offset

VPB

TLB

index

VD

Physical

address

Physical frame

number (PFN)

Page

offset

PPB PD

Re-basing
counters

way x

set 1

VPT PFNv/d VPT PFNv/d

set 2

set 3

set m

Uncompressed entries

way x+1
VD PDv/d VD PDv/d

way n
VD PDv/d VD PDv/d

Compressed entries

6

(VBRs)

9a

Mux Mux

7c7a 7b

hit? hit?
y y

n n

A
ll P

D
s

8a

8b

9b

miss

(PBRs)

Figure 11: Decompression procedure.

4.5 Re-basing

So far, we have discussed the TLB compression and decompression
procedures. However, we left an important question unaddressed:
which address translations should be selected as the base translations

and maintained in the VBRs and PBRs? While a very simple and
intuitive approach is to choose the first address translation that is
inserted into the TLB set in question, and keep the bases unchanged
throughout the entire kernel execution, such approach would not
be aware of the variance in clustered page accesses, as we pointed
out in our characterization. As a result, it can happen that, after the
beginning stage of execution, themajority of translations during the
subsequent execution stages are uncompressible and will contend
in the uncompressed partition of TLB, while leaving the compressed
partition underutilized. In the worst case, this would reduce to a
configuration where only half of the TLB capacity is utilized. In
fact, we observe that, on average, the L2 hit rate drops 6.1% in naive
compression (as shown in the Figure 15 in Section 5.1). Further, for
benchmarks with irregular memory accesses, the L2 TLB hit rate
drops by more than 25%.

To address this problem, we propose a simple re-basing mech-
anism, which dynamically changes the bases in VBRs and PBRs.
Figure 10 shows the re-basing mechanism integrated into the com-
pression process. Each (VBR, PBR) pair is associatedwith a re-basing
counter (a), which is initially set to a positive value.2 Whenever an
uncompressed translation occurs, the re-basing counter is decre-
mented by 1 (b). When the value reaches zero, the next translation
will be used as the new base, and the corresponding VBR and PBR
will be updated by the new bases. Note that this re-basing strategy
will cause all the compressed entries in the TLB set to be flushed,
as the new bases cannot be used with the existing δs in the set.
Therefore, re-basing is not free, and incurs overheads. It is critical
to control the trade-off between re-basing frequency and the asso-
ciated overheads. A large initial counter value has less re-basing
overheads but may incur more TLB misses, whereas a small counter
value aggressively captures the variance in access pattern but may
suffer from re-basing overheads.

2We set the re-basing counter to 16 in our experiments.

4.6 Design Space Exploration

Base selection: The very first ⟨VPB, PPB⟩s are selected using the
first translations arrived at each set at the beginning of kernel
execution. When re-basing happens, one can potentially i) choose
the newly-received address translation, or ii) search for a different
base in the uncompressed TLB partition to find the optimal base
which gives the minimum number of bits needed to represent the
remaining entries in the uncompressed TLB partition. While the
latter chooses bases that give smaller δ values, it also introduces
the overhead of base searching. In our approach, we adopt the
former design for simplicity, and we also found that using the
newly-received translation as the base is good enough for all the
benchmarks we evaluated.
Shared VBRs and PBRs: In our current design, we employ per-
set VBR and PBR. That is, each TLB set has one VPB and one PPB
maintained in the VBR and PBR. As a result, the number of base
registers required is the same as the number of sets in the TLB.
However, one may opt to have different designs. For instance, it
is possible to have one VBR and one PBR for the entire TLB com-
pressed partition. The benefit is that it requires less bookkeeping
registers, and does not require indexing. However, a uniform base
will cause all the compressed entries to be flushed during re-basing.
An alternative design is to have multiple sets to share several bases.
For example, two TLB sets can share the same ⟨VPB, PPB⟩. As a
result, the number of registers required by compression metadata
is halved compared to the per-set base design. In general, if the
number of the TLB indexing bits ism and x sets share the same
base, the lowerm − logx bits will be used to index the VBRs and
PBRs (assuming an interleaved indexing). Clearly, determining the
degree of sharing (i.e., number of sets that share bases) is a trade-
off between the number of registers (hardware overhead) and the
re-basing penalty (performance overhead).
Compression ratio: Next, we study different compression ratios.
We refer to the compression ratio as the number of compressed
translations that can be stored in one (original) TLB entry. In our
current design, the compression ratio is two where each original
TLB entry can hold two compressed translations (as shown in
Figure 9). This is based on our observation in Section 3.4. However,
it is possible to compress more translations into a single TLB entry
(i.e., a larger compression ratio). Later, in our experiments, we also
study a compression ratio of 3, and report the results as well as our
observations in Section 5.2.
Size of partitions: Recalling our discussion in Section 3.4, there
exist address translations that are uncompressible. If the entire TLB
is made to have only compressed entries, all uncompressible trans-
lations will miss the TLB. Further, during re-basing, there would
not be available translations to use for base selection. Therefore,
in our design, we partition the TLB into compressed partition and
uncompressed partition (as shown in Figure 10). A key question
in such partitioning is to determine the size of each partition. We
choose to have a (50%, 50%) design where half of the entries are
uncompressed and half of them are compressed. The ideal partition
should be decided by analyzing the data access pattern of each
application, which is not possible in practice. We also study the
(75%, 25%) and (25%, 75%) partitions, and the collected results are
reported and analyzed in Section 5.2.

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

198

0
0.2
0.4
0.6
0.8

1
1.2

sp
m

v
m

st bh
sr

ad m
is

co
lo

r

hots
pot

dw
t

2d
co

nv

st
en

ci
l

bac
kp

ro
p

pat
hfin

der
m

vt nw
bic

g
at

ax av
g

S
p

e
e

d
u

p

L1 TLB compression with re-basing

Figure 12: Speedup of L1 compression with re-basing.

4.7 Compression in L1 TLB

0
0.2
0.4
0.6
0.8

1

sp
m

v
m

st bh
sr

ad m
is

co
lo

r

hots
pot

dw
t

2d
co

nv

st
en

ci
l

bac
kp

ro
p

pat
hfin

der
m

vt nw
bic

g
at

ax av
gL

1
 T

L
B

 h
it

 r
a

te

basline L1 TLB compression with re-basing

Figure 13: L1 TLB hit rate.

Intuitively, the same TLB compression and decompression mech-
anisms are applicable to the per-SM L1 TLBs as well, as the L1 TLBs
have a similar structure with the L2 TLB. Recall our discussion
in Section 3, most benchmarks have incremental improvements
when the L1 TLB miss penalties are removed. This is because the
interconnect latency is much less compared to the page table walk
overhead that the L2 TLB misses experience. Therefore, the GPU
warp scheduling is able to hide the latency of L1 TLB misses to
some extent. Figure 12 and Figure 13 show performance improve-
ments and L1 TLB hit rates, respectively, when applying L1 TLB
compression. It is important to emphasize that, L1 TLBs are more
time and area constrained than the L2 TLB in GPUs, as the L1 TLBs
are inside each SM and are on the critical path of data accesses to
the L1 data cache. Therefore, in the design of L1 TLB compression,
instead of having per-set ⟨VBR, PBR⟩, each SM has one ⟨VBR, PBR⟩
for the entire L1 TLB. As one can observe from the results shown
in these graphs, our compression scheme does not achieve impres-
sive improvements as in the L2 TLB case. This is because of the
small L1 TLB capacity (32 entries) and associativity (4-way). Due to
this reason, we can have only 2 compressed entries per TLB set in
the (50%, 50%) partitioning. Given the pre-determined compression
ratio of 2, a compressed L1 TLB can hold up to 48 translations.
However, our characterization of page reuse distances in Figure 4
indicates that the number of pages that has reuse distances between
32 and 48 is very low. However, we want to emphasize that, the
L1 TLB compression can be more effective when the capacity and
associativity increase in future generations of GPUs.

4.8 Discussion

Hardware overheads: The major hardware overhead brought by
our design is the bookkeeping structures required for compression
metadata (i.e., VBRs, PBRs, and re-basing counters). Specifically,
each VBR is 18 bits and each PBR is 10 bits, and each re-basing
counter is 4 bits (for the value of 16). In total, each entry in the
compression metadata is 4 bytes (32 bits). Given an L2 TLB with 512
entries and 16-way associativity, the number of sets is 32; therefore,
the size of the compression metadata is 128 bytes (4×32 bytes).
Our design also requires eight 13-bit comparators to perform TLB

lookup in compressed entries, and one 8-bit mux to switch between
all PDs. We use shift registers to concatenate the bases with the δs.
We use CACTI [64] to estimate the area and power overheads of our
approach. The result shows 2.1% area overhead compared to the
area of L2 TLB. The dynamic power (including both read and write)
and the leakage power increase by 1.8% and 2.5%, respectively,
compared to the original L2 TLB. Given the fact that the TLBs
contribute to a small portion of the overall system dynamic power
(less than 1%) [31], our approach brings negligible overhead to the
overall system power.

5 EVALUATION

In this section, we present and discuss the results from the exper-
imental evaluation of our proposed GPU TLB compression. We
implement our TLB compression in gem5-gpu and execute it in
SE mode. The system configuration (e.g., compute resource, cache
capacity, and TLB capacity) is the same as the baseline listed in
Table 3. It is to be noted that, all the results we present in this
section have been collected from the L2 TLB, since the L1 TLB
does not provide promising improvements as we discussed ear-
lier in Section 4.7. We first report the performance improvements
and L2 TLB hit rates of the baseline, naive compression without
re-basing, and our defended compression with re-basing. We then
thoroughly quantify the different design options for compression,
as mentioned in Section 4.6, and also compare our approach to a
recently published TLB optimization work.

5.1 Overall Performance

0

0.5

1

1.5

2

sp
m

v
m

st

hea
rt
w
al

l
bh

pag
e_

ra
nk

sr
ad fw m

is

co
lo

r

hots
pot

dw
t

km
ea

ns
bfs

2d
co

nv

st
en

ci
l

bac
kp

ro
p

pat
hfin

der
m

vt nw
bic

g
at

ax bc
av

g

S
p

e
e
d

u
p

L2 TLB compression L2 TLB compression with re-basing

Figure 14: Normalized performance improvements of L2

compression and L2 compression with re-basing.

Figure 14 plots the overall performance improvements brought
by our scheme (both with and without re-basing). We use speedup
over the baseline as a measure of performance improvement. We
also show the corresponding L2 TLB hit rates for all benchmarks
in Figure 15. Based on the results presented in these two figures,
one can make the following observations. First, the average perfor-
mance improvement brought by compression with re-basing across
all benchmarks is 12%. Specifically, for 16 benchmarks that are mem-
ory intensive and/or exhibit irregular memory accesses patterns,
our approach improves the performance up to 69.2%, with an aver-
age improvement of 16.3%. And, for the remaining 6 benchmarks
that are compute-intensive and regular, our approach does not de-
grade the performance. Second, these performance benefits come
mainly from the enhanced L2 TLB hit rates through compression
with re-basing. For example, the L2 TLB hit rate of kmeans improves
by 14.9%, which translates to 19.6% performance improvement. A
similar improvement trend can also be observed in applications

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

199

such as mis, color, bfs, mvt, and bc. Note that, our scheme ben-
efits irregular applications significantly. This is because, in such
applications, L2 TLB entries are frequently evicted before they get
the chance to be reused in the baseline execution due to large page
reuse distances. Our scheme effectively increases L2 TLB reach, and
as a result, the TLB can accommodate more translations and also
capture a larger fraction of reused translations. Third, compression
without re-basing hurts performance severely, especially in the case
of irregular applications. In fact, benchmarks page_rank, mis, and
bfs show more that 25% performance degradation. This is because
using unchanged base throughout the entire execution prevents
us from capturing the variances of clustered page accesses, and
causes most address translations contending for the uncompressed
TLB entries while leaving the compressed entries idle. Fourth, our
approach does not affect the applications, such as spmv, srad, and
bh, which already have good L2 TLB hit rates. In other words, our
TLB partition and compression do not degrade the hit rates of these
benchmarks and do not affect their performance. One reason is
that these benchmarks are either compute-intensive (spmv), or they
have less page reuses (e.g., a streaming application (srad), or an
irregular application with little data reuse (bh)). Another reason is
that our design has uncompressed TLB entries for uncompressible
translations, and also the parallel lookup in TLB does not intro-
duce significant overhead to compressed translations. Finally, GPU
execution can effectively hide most of the address translation la-
tencies for those compute-intensive applications because of the
lightweight context switching among warps. That is why the com-
pression does not improve the performance of those applications
since a large portion of the TLB miss penalties can be hidden by
the overlapping execution with other warps (which is not possible
for memory intensive and irregular applications). We also tested
a 256 entry L2 TLB (i.e., half-sized TLB compared to our baseline
setting), and it shows performance degradation for some of the
computation-intensive applications, as more TLB misses occur and
the warp scheduling is unable to hide the increasing overheads.

It is important to emphasize that simply enlarging the TLB ca-
pacity is not able to yield similar TLB hit rate improvements and
performance gains. We conduct experiments with 1024 entry L2
TLB (instead of 512) in baseline execution, and the average L2 TLB
hit rate improves by 3.2%, compared to 6.3% brought by our ap-
proach without enlarging the TLB capacity. Given the fact that large
TLB will also increase the lookup latency, we believe our approach
is more scalable for future heterogeneous platforms.

5.2 Different Design Options in TLB
Compression

Base selection: As discussed earlier, one can choose to have the
newly-received translation as the base or search for the optimal base.
In our evaluations so far, we have employed the newly-received base
for simplicity. We now discuss choosing a different base and the
impact of doing so on application performance. During execution,
when re-basing counter decreases to 0, all the compressed entries in
the set are flushed/invalidated due to re-basing, leaving only uncom-
pressed TLB entries in the set valid. We search the uncompressed
entries for a proper base. This is because a re-basing is only triggered
after a number of consecutive uncompressible address translations.

0
0.2
0.4
0.6
0.8

1
1.2

sp
m

v
m

st

hea
rt
w
al

l
bh

pag
e_

ra
nk

sr
ad fw m

is

co
lo

r

hots
pot

dw
t

km
ea

ns
bfs

2d
co

nv

st
en

ci
l

bac
kp

ro
p

pat
hfin

der
m

vt nw
bic

g
at

ax bc
av

g

L
2

 T
L

B
 h

it
 r

a
te

baseline L2 TLB compression L2 TLB compression with re-basing

Figure 15: L2 TLB hit rates of L2 compression and L2 com-

pression with re-basing.

These translations reside in the uncompressed TLB entries, and it
is highly likely that the subsequent arriving address accesses are
clustered with these translations. The bars labeled with łsearched
basež in Figure 16 and Figure 17 show the performance speedup and
L2 hit rate of searching optimal base. As one can observe, both the
TLB hit rate and the overall performance differences are negligible
(less than 1%), compared to the newly-received base (our default
compression scheme). We believe that this is because the newly-
received translation is generally compressible to the translations
that reside in the uncompressed TLB entries. As a result, the com-
pression efficiency is not affected. Note that, an ideal base would
be selected by knowing the application’s future page access pat-
terns. One can potentially build learning-models/heuristic-models
for that or employ various analytic methods. A detailed exploration
of these sophisticated methods is planned in our future work, and
is beyond the scope of this paper.
Shared VBRs and PBRs: Next, we explore the option of having
multiple TLB sets sharing the same compression metadata. (i.e.,
VBR, PBR, and re-basing counter). Our goal is to study the tradeoff
between the hardware overheads (i.e., the number of VBRs, PBR,
and re-basing counters) and the re-basing penalty (i.e., the number
of entries that need to be flushed during re-basing). The bars labeled
łshared by 2 setsž and łshared by 4 setsž in Figure 16 and Figure 17
plot the performance speedup and L2 hit rate, respectively. Specif-
ically, łshared by 2 setsž represents a setup where two sets share
the same base, whereas łshared by 4 setsž represents a setup where
four sets share the same base. Note that, the number of registers
required to maintain compression metadata is halved in the former
compared to our per-set base design, whereas the number of re-
quired registers in the latter is further halved. As can be seen from
these results, the overall performance of both the designs is about
1% worse, compared to the default case (no shared VBR/PBR). This
is because the clustered page access pattern not only exhibits trans-
lation similarity within one particular TLB set, but across other
sets. However, we want to emphasize that we choose to use per-set
compression base as it does not require separate logic to index
multiple sets during flushing and incurs less flushing overheads.
One alternative design is to have multiple VBRs and PBRs within
a given set. This is because some applications that have a small
number of pages in different clusters will occupy the compressed
sets quickly, and other pages will have to occupy the uncompressed
entries, leading to the under-utilization of the compressed entries.
Having multiple bases within a set can potentially improve the
TLB utilization of applications with small clusters. However, the
under-utilization is rare for most of the memory-intensive appli-
cations as i) they generally have a large number of pages in each
cluster, and ii) our re-basing scheme can quickly detect and re-base
the corresponding sets. Moreover, having multiple VBRs and PBRs

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

200

0

0.5

1

1.5

2

bh srad mis color stencil nw avg

S
p

e
e

d
u

p

default compression searched base shared by 2 sets

shared by 4 sets compress ratio 3 partition (25%,75%)

partition (75%,25%)

Figure 16: Normalized performance improvements of differ-

ent design options

0

0.5

1

bh srad mis color stencil nw avg

L
2
 h

it
 r

a
te

basline default compression searched base

shared by 2 sets shared by 4 sets compress ratio 3

partition (25%,75%) partition (75%,25%)

0

0.5

1

bh srad mis color stencil nw avg

L
2
 h

it
 r

a
te

basline default compression searched base

shared by 2 sets shared by 4 sets compress ratio 3

partition (25%,75%) partition (75%,25%)

baseline

Figure 17: L2 TLB hit rate of different design options

within a set involves overhead of another level of indexing the bases
within a set.
Compression ratio: Our discussion so far has employed a com-
pression ratio of 2. That is, each original TLB entry in the com-
pressed partition is restructured to hold two compressed transla-
tions. In this part of our experimental evaluation, we study perfor-
mance and TLB hit rate when employing a compression ratio of 3,
where each TLB entry in the compressed partition stores 3 com-
pressed ⟨VD, PD⟩ pairs. The bars (łcompress ratio 3ž) in Figure 16
and Figure 17 plot the corresponding results. We observe that the
average performance improves by 5.2%, and the hit rate increases
by 2.8%. In particular, for nw, the L2 hit rate improves by 12.3%.
This is because 99% of the virtual deltas of nw can be represented
using less than 10 bits in our characterization. Note that, one can
potentially choose even larger compression ratios. However, a large
compression ratio leads to less number of bits to represent the deltas
without changing the TLB size. Therefore, more uncompressible
translations may occur and thrash the uncompressed TLB partition.
Size of partition: We next vary the sizes of the compressed and
uncompressed TLB partitions and collect performance results. Re-
call that, in our previous experiments, we used a (50%,50%) parti-
tion. In Figure 17, the bar labeled with łpartition (75%,25%)ž shows
the L2 hit rate observed when 3/4 TLB entries are uncompressed.
Similarly, the bar łpartition (25%,75%)ž indicates the hit rate ob-
served when 1/4 TLB entries are uncompressed. Overall, we observe
that, different partition sizes can affect the application L2 TLB hit
rate and performance differently. For instance. the L2 hit rate of
srad drops by 20.1% in (25%,75%) due to the fact that srad has
large amount of uncompressible address translations. In contrast,
nw prefers (75%,25%) configuration where the hit rate is higher
compared to (25%,75%) configuration. This is because nw has more
compressible translations than uncompressible translations during
execution.

5.3 Comparison to an Alternative TLB
Optimization

We quantitatively compare our proposed TLB compression mech-
anism with a recently published range TLB optimization [69] to

0
0.5

1
1.5

2

bh
sr

ad m
is

co
lo

r
dw

t

st
en

ci
l

bac
kp

ro
p

pat
hfin

der
av

g

S
p

e
e
d

u
p

TLB compression range TLB

Figure 18: Comparison to an alternative TLB optimization

scheme.

demonstrate that TLB compression is more effective and suitable in
GPU executions. Our scheme can capture non-continuous page ac-
cesses and does not rely on the OS to generate continuous physical
pages as in range TLB. Figure 18 compares the performance of our
proposed approach to range TLB (the results for both the schemes
are normalized with respect to the baseline). It can be observed
that, our approach performs, on average, 49.6% than range TLB for
irregular applications. The main reason is that range TLB requires
the OS to generate continuous physical pages which is extremely
expensive in UVM in CPU-GPU systems.

5.4 Using Large Pages

One can potentially adopt large pages to increase the TLB reach,
and ultimately the TLB hit rates [9, 25]. We quantitatively evaluated
the impact of adopting large pages. Figure 19 and Figure20 show the
L2 TLB hit rates and the speedup for all 22 benchmarks when 2MB
page is used. One can make the following observations. First, most
of the benchmarks show a significant increase in L2 TLB hit rates
and performance when using the 2MB page compared to the 4KB
page results given in Figures 15 and 14. This indicates the benefits
of adopting large pages and is consistent with a previous study [50].
Second, our proposed compression is not restricted to particular
page sizes. Specifically, with the 2MB page, our compression can
further improve the L2 TLB hit rate with an average of 3.3%, which
translates to an average of 7.4% performance improvement. Third,
for benchmarks color and mst, our approach on 4KB page has
a better TLB hit rate than 2MB page without compression. The
reason behind this is the large stride in data accesses caused by
irregular and unstructured inputs. This leads to very poor page
utilization during the period when the translation is valid in TLB.
However, our compression approach can provide benefits for large
stride accesses since we use different bases for different sets.

It is important to note that large pages can hurt performance in
GPUs, compared to using small pages [6, 9, 16]. The reason behind
this is that large pages increase the overheads tremendously in
CPU-GPU unified virtual memory. Specifically, the paging traffic
between CPU and GPU is severe for 2MB page compared to 4KB
page [6], and a TLBmiss on large page stalls many more GPUwarps
than a TLB miss on a small page [5]. In addition, using large pages
increases intra-page fragmentation, especially for irregular GPU
applications. Unfortunately, the benchmarks we evaluated in this
paper do not have frequent interleaved accesses from both the CPU
side and the GPU side. The GPU does most of the computations in
these benchmarks.

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

201

0

0.2

0.4

0.6

0.8

1

L
2

 T
L

B
 H

it
 R

a
te

2MB page 2MB page + Compression

Figure 19: L2 TLB hit rates when adopting 2MB pages and

our proposed compression with re-basing.

0

1

2

3

4

5

S
p

e
e

d
u

p

4KB page + compression 2MB page 2MB page + Compression

Figure 20: Speedup of 2MB page with proposed compression

(normalized to 4KB page baseline execution).

6 RELATEDWORK
Data access optimizations: Prior works have focused on UVM
optimizations, data locality optimizations, and data parallelism opti-
mizations [17, 19, 22, 24, 27, 38ś40, 47, 48, 58ś63, 70, 71, 71]. Power
et al. [50] explored the GPUMMU design, and developed a x86 com-
patible GPU TLB hierarchy and a page table walker. Ausavarung-
nirun et al. [5] proposed support for multiple page sizes. Pichai
et al. [46] explored TLB-aware warp scheduling to improve the
L1 TLB parallel accessing performance. Hao et al. [21] proposed
a two-level TLB hierarchy support UVM between the host CPU
cores and customized accelerators. Agarwal et al. [1] conducted a
detailed characterization of the tradeoffs between hardware cache-
coherence mechanism and software page migration. Instead of
hardware-supported address translation, Shahar et al. [55] imple-
mented a software level address translation. Vesely et al. [65] char-
acterized the performance of UVM and pointed out that the TLB
misses in GPUs are significantly more expansive compared to their
counterparts in CPUs. Compared with all these prior efforts on
UVM, our approach is the first work to explore the translation com-
pressibility in a CPU-GPU based UVM environment. Our approach
is built upon the unique execution characteristics of GPU and effec-
tively increases the TLB reach with minimal hardware overhead.
Meanwhile, our approach is complementary to most prior works
(e.g., page table walk optimization for irregular applications [56])
and can be combined with them to further improve the UVM per-
formance.
Address translation optimizations: There exists a substantial
body of research works, both from the OS community and the
architecture community, focusing on address translation optimiza-
tions [2, 7, 8, 12, 29, 37, 42]. Vogel et al. [67] investigated a software-
hardware codesign strategy to enable virtual memory support for
accelerators in heterogeneous SoC systems. Vesely et al. [66] pro-
posed a generic GPU system call interface for Linux, which allows
GPUs to initial system calls. Bharadwaj et al. [10] studied distributed
TLB slicing and corresponding network topologies, to accelerate
address translation. Yan et al. [69] proposed translation ranger, an
OS support, to enable continuous page accesses such that the TLB
can store fewer translations. Pham et al. [43] proposed a Bloom

filter-based hardware mechanism that can be used to reduce the
overheads imposed by cache flushes due to virtual page remap-
pings. Shin et al. [56] explored various critical warp-aware page
table walking strategies to accelerate irregular application address
translations. Margaritov et al. [32] proposed parallel translation
prefetching to avoid multiple levels of sequential page table walks
in CPUs. Cox et al. [16] invented MIX TLBs, which supports (con-
currently) multiple page sizes by exploiting superpage allocation
patterns. Compared to these prior works, our work neither requires
continuity in subsequent accessed pages, nor expensive OS handling
of page rearrangement. Instead, we propose a hardware-supported
dynamic compression mechanism that captures the clustered page
access pattern in application programs running on GPUs. Our ap-
proach is programmer-transparent and involves minimal hardware
overhead. Furthermore, our approach does not require any runtime
physical page rearrangement, which is very costly in UVM.

7 CONCLUDING REMARKS

Targeting unified virtual memory, which is becoming prevalent
in state-of-the-art CPU-GPU systems, in this paper, we propose
and experimentally evaluate simple yet efficient compression and
decompression mechanisms that improve TLB hit rates in GPUs.
Specifically, we explore TLB compressibility, based on the observa-
tions we make from our detailed analysis of page reuse distances
and clustered page access patterns. We then enhance the GPU TLB
hardware, to make it work with compressed TLB entries. Experi-
mental results collected using benchmarks from various application
domains indicate that, our proposed compression-based approach
significantly improves TLB hit rates and overall application perfor-
mance.

ACKNOWLEDGEMENT

The authors thank PACT reviewers and shepherd for their construc-
tive feedback and suggestion for improving this paper. The authors
also thank John Morgan Sampson and Jagadish Kotra for their in-
volvement in early discussions relevant to this work. This material
is based upon work supported by the National Science Founda-
tion under grants #1763681, #1629129, #1931531, #1629915, and is
supported by a startup grant from the University of Pittsburgh.

REFERENCES
[1] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch. 2015.

Unlocking bandwidth for GPUs in CC-NUMA systems. In 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 354ś365.
https://doi.org/10.1109/HPCA.2015.7056046

[2] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. 2017. Do-It-Yourself
Virtual Memory Translation. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). ACM,
New York, NY, USA, 457ś468. https://doi.org/10.1145/3079856.3080209

[3] AMD Corp. 2016. I/O Virtualization Technology(IOMMU) Specification. https:
//www.amd.com/system/files/TechDocs/48882_IOMMU.pdf

[4] AMD Corp. 2017. Radeons Next-generation Vega Architecture. https://radeon.
com/_downloads/vega-whitepaper-11.6.17.pdf

[5] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi, C. J. Rossbach, and
O. Mutlu. 2017. Mosaic: A GPU Memory Manager with Application-Transparent
Support for Multiple Page Sizes. In 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 136ś150.

[6] Rachata Ausavarungnirun, VanceMiller, Joshua Landgraf, Saugata Ghose, Jayneel
Gandhi, Adwait Jog, Christopher J. Rossbach, and Onur Mutlu. 2018. MASK:

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

202

https://doi.org/10.1109/HPCA.2015.7056046
https://doi.org/10.1145/3079856.3080209
https://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf
https://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf
https://radeon.com/_downloads/vega-whitepaper-11.6.17.pdf
https://radeon.com/_downloads/vega-whitepaper-11.6.17.pdf

Redesigning the GPU Memory Hierarchy to Support Multi-Application Con-
currency. In Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Williams-
burg, VA, USA) (ASPLOS ’18). ACM, New York, NY, USA, 503ś518. https:
//doi.org/10.1145/3173162.3173169

[7] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation Caching: Skip,
Don’T Walk (the Page Table). In Proceedings of the 37th Annual International
Symposium on Computer Architecture (Saint-Malo, France) (ISCA ’10). ACM, New
York, NY, USA, 48ś59. https://doi.org/10.1145/1815961.1815970

[8] T. W. Barr, A. L. Cox, and S. Rixner. 2011. SpecTLB: A mechanism for speculative
address translation. In 2011 38th Annual International Symposium on Computer
Architecture (ISCA). 307ś317.

[9] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. 2013. Efficient Virtual Memory for Big Memory Servers. In Proceedings
of the 40th Annual International Symposium on Computer Architecture (Tel-Aviv,
Israel) (ISCA ’13). ACM, New York, NY, USA, 237ś248. https://doi.org/10.1145/
2485922.2485943

[10] S. Bharadwaj, G. Cox, T. Krishna, and A. Bhattacharjee. 2018. Scalable Distributed
Last-Level TLBs Using Low-Latency Interconnects. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 271ś284. https://doi.
org/10.1109/MICRO.2018.00030

[11] Abhishek Bhattacharjee. 2013. Large-reach Memory Management Unit Caches.
In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microar-
chitecture (Davis, California) (MICRO-46). ACM, New York, NY, USA, 383ś394.
https://doi.org/10.1145/2540708.2540741

[12] Abhishek Bhattacharjee. 2017. Translation-Triggered Prefetching. In Proceedings
of the Twenty-Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Xi’an, China) (ASPLOS ’17). ACM,
New York, NY, USA, 63ś76. https://doi.org/10.1145/3037697.3037705

[13] Luca Caucci and Lars R. Furenlid. 2015. GPU programming for biomedical
imaging. In Medical Applications of Radiation Detectors V, H. Bradford Barber,
Lars R. Furenlid, and Hans N. Roehrig (Eds.), Vol. 9594. International Society for
Optics and Photonics, SPIE, 79 ś 93. https://doi.org/10.1117/12.2195217

[14] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron. 2013. Pannotia: Un-
derstanding irregular GPGPU graph applications. In 2013 IEEE International
Symposium on Workload Characterization (IISWC). 185ś195. https://doi.org/10.
1109/IISWC.2013.6704684

[15] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron.
2009. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE
International Symposium on Workload Characterization (IISWC). 44ś54. https:
//doi.org/10.1109/IISWC.2009.5306797

[16] Guilherme Cox and Abhishek Bhattacharjee. 2017. Efficient Address Translation
for Architectures with Multiple Page Sizes. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages
and Operating Systems (Xi’an, China) (ASPLOS ’17). ACM, New York, NY, USA,
435ś448. https://doi.org/10.1145/3037697.3037704

[17] Wei Ding, Xulong Tang, Mahmut Kandemir, Yuanrui Zhang, and Emre Kultursay.
2015. Optimizing Off-chip Accesses in Multicores. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI).

[18] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O.
Temam. 2015. ShiDianNao: Shifting vision processing closer to the sensor. In
2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA). 92ś104. https://doi.org/10.1145/2749460779.2750389

[19] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. 2019. Interplay
Between Hardware Prefetcher and Page Eviction Policy in CPU-GPU Unified
Virtual Memory. In Proceedings of the 46th International Symposium on Computer
Architecture (Phoenix, Arizona) (ISCA ’19). ACM, New York, NY, USA, 224ś235.
https://doi.org/10.1145/3307650.3322224

[20] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. 2012. Auto-
tuning a high-level language targeted to GPU codes. In 2012 Innovative Parallel
Computing (InPar). 1ś10. https://doi.org/10.1109/InPar.2012.6339595

[21] Y. Hao, Z. Fang, G. Reinman, and J. Cong. 2017. Supporting Address Translation
for Accelerator-Centric Architectures. In 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 37ś48. https://doi.org/10.1109/
HPCA.2017.19

[22] Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2018. Devirtualizing Mem-
ory in Heterogeneous Systems. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (Williamsburg, VA, USA) (ASPLOS ’18). ACM, New York, NY, USA,
637ś650. https://doi.org/10.1145/3173162.3173194

[23] Timothy D.R. Hartley, Umit Catalyurek, Antonio Ruiz, Francisco Igual, Rafael
Mayo, and Manuel Ujaldon. 2014. Biomedical Image Analysis on a Cooperative
Cluster of GPUs and Multicores. In ACM International Conference on Supercom-
puting 25th Anniversary Volume (Munich, Germany). ACM, New York, NY, USA,
413ś423. https://doi.org/10.1145/2591635.2667189

[24] Mahmut Kandemir, Hui Zhao, Xulong Tang, and Mustafa Karakoy. 2015. Memory
Row Reuse Distance and Its Role in Optimizing Application Performance. In Pro-
ceedings of the 2015 ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS).
[25] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill,

Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Ünsal.
2015. Redundant Memory Mappings for Fast Access to Large Memories. In
Proceedings of the 42Nd Annual International Symposium on Computer Architecture
(Portland, Oregon) (ISCA ’15). ACM, New York, NY, USA, 66ś78. https://doi.org/
10.1145/2749469.2749471

[26] Jens Kehne, Jonathan Metter, and Frank Bellosa. 2015. GPUswap: Enabling Over-
subscription of GPU Memory Through Transparent Swapping. In Proceedings
of the 11th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (Istanbul, Turkey) (VEE ’15). ACM, New York, NY, USA, 65ś77.
https://doi.org/10.1145/2731186.2731192

[27] Orhan Kislal, Jagadish Kotra, Xulong Tang, Mahmut Taylan Kandemir, and My-
oungsoo Jung. 2018. Enhancing Computation-to-core Assignment with Physical
Location Information. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

[28] M. Kulkarni, M. Burtscher, C. Cascaval, and K. Pingali. 2009. Lonestar: A suite of
parallel irregular programs. In 2009 IEEE International Symposium on Performance
Analysis of Systems and Software. 65ś76. https://doi.org/10.1109/ISPASS.2009.
4919639

[29] Mohan Kumar Kumar, Steffen Maass, Sanidhya Kashyap, Ján Veselý, Zi Yan,
Taesoo Kim, Abhishek Bhattacharjee, and Tushar Krishna. 2018. LATR: Lazy
Translation Coherence. In Proceedings of the Twenty-Third International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(Williamsburg, VA, USA) (ASPLOS ’18). ACM, New York, NY, USA, 651ś664.
https://doi.org/10.1145/3173162.3173198

[30] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett
Witchel. 2016. Coordinated and Efficient Huge Page Management with Ingens.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association, Berkeley,
CA, USA, 705ś721. http://dl.acm.org/citation.cfm?id=3026877.3026931

[31] Jieun Lim, Nagesh B. Lakshminarayana, Hyesoon Kim, William Song, Sudhakar
Yalamanchili, and Wonyong Sung. 2014. Power Modeling for GPU Architectures
Using McPAT. ACM Trans. Des. Autom. Electron. Syst. 19, 3, Article 26 (June 2014),
24 pages. https://doi.org/10.1145/2611758

[32] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. 2019.
Prefetched Address Translation. In Proceedings of the 52Nd Annual IEEE/ACM
International Symposium on Microarchitecture (Columbus, OH, USA) (MICRO ’52).
ACM, New York, NY, USA, 1023ś1036. https://doi.org/10.1145/3352460.3358294

[33] Sparsh Mittal and Jeffrey S. Vetter. 2015. A Survey of CPU-GPU Heterogeneous
Computing Techniques. ACM Comput. Surv. 47, 4, Article 69 (July 2015), 35 pages.
https://doi.org/10.1145/2788396

[34] NVIDIA Corp. 2016. NVIDIA Tesla P100. https://images.nvidia.com/content/pdf/
tesla/whitepaper/pascal-architecture-whitepaper.pdf

[35] NVIDIA Corp. 2018. NVIDIA Pascal Architecture. https://www.nvidia.com/en-
us/data-center/pascal-gpu-architecture/

[36] M. Parasar, A. Bhattacharjee, and T. Krishna. 2018. SEESAW: Using Superpages
to Improve VIPT Caches. In 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA). 193ś206.

[37] C. H. Park, T. Heo, J. Jeong, and J. Huh. 2017. Hybrid TLB coalescing: Improving
TLB translation coverage under diverse fragmented memory allocations. In 2017
ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).
444ś456. https://doi.org/10.1145/3079856.3080217

[38] E. Park, J. Ahn, S. Hong, S. Yoo, and S. Lee. 2015. Memory fast-forward: A low cost
special function unit to enhance energy efficiency in GPU for big data processing.
In 2015 Design, Automation Test in Europe Conference Exhibition (DATE). 1341ś
1346.

[39] Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. Mishra,
Mahmut T. Kandemir, OnurMutlu, and Chita R. Das. 2016. Scheduling Techniques
for GPU Architectures with Processing-In-Memory Capabilities. In Proceedings
of the 2016 International Conference on Parallel Architectures and Compilation
(PACT).

[40] Ashutosh Pattnaik, Xulong Tang, Onur Kayiran, Adwait Jog, Asit Mishra, Mah-
mut T. Kandemir, Anand Sivasubramaniam, and Chita R. Das. 2019. Opportunistic
Computing in GPU Architectures. In Proceedings of the 46th International Sympo-
sium on Computer Architecture.

[41] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Michael A Kozuch, Phillip B
Gibbons, and Todd C Mowry. 2012. Base-delta-immediate compression: Practical
data compression for on-chip caches. In 2012 21st International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE, 377ś388.

[42] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh. 2014. Increasing TLB reach
by exploiting clustering in page translations. In 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA). 558ś567. https:
//doi.org/10.1109/HPCA.2014.6835964

[43] Binh Pham, Derek Hower, Abhishek Bhattacharjee, and Trey Cain. 2018. TLB
ShootdownMitigation for Low-PowerMany-Core Servers with L1 Virtual Caches.
IEEE Comput. Archit. Lett. 17, 1 (Jan. 2018), 17ś20. https://doi.org/10.1109/LCA.

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

203

https://doi.org/10.1145/3173162.3173169
https://doi.org/10.1145/3173162.3173169
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1109/MICRO.2018.00030
https://doi.org/10.1109/MICRO.2018.00030
https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1145/3037697.3037705
https://doi.org/10.1117/12.2195217
https://doi.org/10.1109/IISWC.2013.6704684
https://doi.org/10.1109/IISWC.2013.6704684
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/3037697.3037704
https://doi.org/10.1145/2749460779.2750389
https://doi.org/10.1145/3307650.3322224
https://doi.org/10.1109/InPar.2012.6339595
https://doi.org/10.1109/HPCA.2017.19
https://doi.org/10.1109/HPCA.2017.19
https://doi.org/10.1145/3173162.3173194
https://doi.org/10.1145/2591635.2667189
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1145/2731186.2731192
https://doi.org/10.1109/ISPASS.2009.4919639
https://doi.org/10.1109/ISPASS.2009.4919639
https://doi.org/10.1145/3173162.3173198
http://dl.acm.org/citation.cfm?id=3026877.3026931
https://doi.org/10.1145/2611758
https://doi.org/10.1145/3352460.3358294
https://doi.org/10.1145/2788396
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://doi.org/10.1145/3079856.3080217
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/LCA.2017.2712140
https://doi.org/10.1109/LCA.2017.2712140

2017.2712140
[44] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhat-

tacharjee. 2012. CoLT: Coalesced Large-Reach TLBs. In Proceedings of the
2012 45th Annual IEEE/ACM International Symposium on Microarchitecture (Van-
couver, B.C., CANADA) (MICRO-45). IEEE Computer Society, USA, 258ś269.
https://doi.org/10.1109/MICRO.2012.32

[45] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee. 2015. Large pages and light-
weight memory management in virtualized environments: Can you have it both
ways?. In 2015 48th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). 1ś12. https://doi.org/10.1145/2830772.2830773

[46] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Architectural
Support for Address Translation on GPUs: Designing Memory Management
Units for CPU/GPUs with Unified Address Spaces. In Proceedings of the 19th
International Conference on Architectural Support for Programming Languages and
Operating Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). ACM, New York,
NY, USA, 743ś758. https://doi.org/10.1145/2541940.2541942

[47] B. Pichai, L. Hsu, and A. Bhattacharjee. 2015. Address Translation for Throughput-
Oriented Accelerators. IEEE Micro 35, 3 (May 2015), 102ś113. https://doi.org/10.
1109/MM.2015.44

[48] J. Picorel, D. Jevdjic, and B. Falsafi. 2017. Near-Memory Address Translation.
In 2017 26th International Conference on Parallel Architectures and Compilation
Techniques (PACT). 303ś317. https://doi.org/10.1109/PACT.2017.56

[49] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood. 2015. gem5-gpu: A
Heterogeneous CPU-GPU Simulator. IEEE Computer Architecture Letters 14, 1
(Jan 2015), 34ś36. https://doi.org/10.1109/LCA.2014.2299539

[50] J. Power, M. D. Hill, and D. A. Wood. 2014. Supporting x86-64 address transla-
tion for 100s of GPU lanes. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). 568ś578. https://doi.org/10.1109/
HPCA.2014.6835965

[51] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2012. Cache-Conscious
Wavefront Scheduling. In MICRO.

[52] Jihyun Ryoo, Mengran Fan, Xulong Tang, Huaipan Jiang, Meena Arunachalam,
Sharada Naveen, andMahmut T Kandemir. 2019. Architecture-Centric Bottleneck
Analysis for Deep Neural Network Applications. In 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE,
205ś214.

[53] R. Samanta, J. Surprise, and R. Mahapatr. 2008. Dynamic Aggregation of Virtual
Addresses in TLB Using TCAM Cells. In 21st International Conference on VLSI
Design (VLSID 2008). 243ś248. https://doi.org/10.1109/VLSI.2008.57

[54] Peter Sanders and Christian Schulz. 2012. 10th Dimacs Implementation Challenge-
Graph Partitioning and Graph Clustering. (2012).

[55] S. Shahar, S. Bergman, and M. Silberstein. 2016. ActivePointers: A Case for Soft-
ware Address Translation on GPUs. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). 596ś608. https://doi.org/10.1109/
ISCA.2016.58

[56] S. Shin, G. Cox, M. Oskin, G. H. Loh, Y. Solihin, A. Bhattacharjee, and A. Basu.
2018. Scheduling Page Table Walks for Irregular GPU Applications. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).
180ś192. https://doi.org/10.1109/ISCA.2018.00025

[57] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. 2012. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing 127 (2012).

[58] Xulong Tang, Mahmut Kandemir, Praveen Yedlapalli, and Jagadish Kotra. 2016.
Improving Bank-Level Parallelism for Irregular Applications. In Proceedings of the
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[59] Xulong Tang, Mahmut Taylan Kandemir, Hui Zhao, Myoungsoo Jung, and
Mustafa Karakoy. 2019. Computing with Near Data. In Proceedings of the 2019
ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS).

[60] Xulong Tang, Orhan Kislal, Mahmut Kandemir, and Mustafa Karakoy. 2017. Data
Movement Aware Computation Partitioning. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[61] Xulong Tang, Ashutosh Pattnaik, Huaipan Jiang, Onur Kayiran, Adwait Jog,
Sreepathi Pai, Mohamed Ibrahim, Mahmut Kandemir, and Chita Das. 2017. Con-
trolled Kernel Launch for Dynamic Parallelism in GPUs. In Proceedings of the 23rd
International Symposium on High-Performance Computer Architecture (HPCA).

[62] Xulong Tang, Ashutosh Pattnaik, Onur Kayiran, Adwait Jog, Mahmut Taylan Kan-
demir, and Chita R. Das. 2019. Quantifying Data Locality in Dynamic Parallelism
in GPUs. In Proceedings of the 2019 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS).

[63] Xulong Tang, Mahmut Taylan Kandemir, Mustafa Karakoy, and Meena Arunacha-
lam. 2019. Co-OptimizingMemory-Level Parallelism and Cache-Level Parallelism.
In Proceedings of the 40th annual ACM SIGPLAN conference on Programming Lan-
guage Design and Implementation.

[64] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi. 2008.
A Comprehensive Memory Modeling Tool and Its Application to the Design
and Analysis of Future Memory Hierarchies. In 2008 International Symposium on
Computer Architecture. 51ś62. https://doi.org/10.1109/ISCA.2008.16

[65] J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee. 2016. Observations
and opportunities in architecting shared virtual memory for heterogeneous
systems. In 2016 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). 161ś171. https://doi.org/10.1109/ISPASS.2016.7482091

[66] J. Veselý, A. Basu, A. Bhattacharjee, G. H. Loh, M. Oskin, and S. K. Reinhardt.
2018. Generic System Calls for GPUs. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 843ś856. https://doi.org/10.1109/
ISCA.2018.00075

[67] P. Vogel, A. Marongiu, and L. Benini. 2015. Lightweight virtual memory sup-
port for many-core accelerators in heterogeneous embedded SoCs. In 2015 In-
ternational Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS). 45ś54. https://doi.org/10.1109/CODESISSS.2015.7331367

[68] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song,
Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dynamic GPU Memory
Management for Training Deep Neural Networks. In Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (Vienna,
Austria) (PPoPP ’18). ACM, New York, NY, USA, 41ś53. https://doi.org/10.1145/
3178487.3178491

[69] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Transla-
tion Ranger: Operating System Support for Contiguity-aware TLBs. In Proceedings
of the 46th International Symposium on Computer Architecture (Phoenix, Arizona)
(ISCA ’19). ACM, New York, NY, USA, 698ś710. https://doi.org/10.1145/3307650.
3322223

[70] S. Zhang, Y. Yang, L. Shen, and Z. Wang. 2018. Efficient Data Communica-
tion between CPU and GPU through Transparent Partial-Page Migration. In
2018 IEEE 20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City; IEEE 4th Inter-
national Conference on Data Science and Systems (HPCC/SmartCity/DSS). 618ś625.
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00112

[71] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S.W. Keckler. 2016. Towards
high performance paged memory for GPUs. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 345ś357. https://doi.org/10.
1109/HPCA.2016.7446077

Session 3: Parallel Architectures PACT '20, October 3–7, 2020, Virtual Event, USA

204

https://doi.org/10.1109/LCA.2017.2712140
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/2541940.2541942
https://doi.org/10.1109/MM.2015.44
https://doi.org/10.1109/MM.2015.44
https://doi.org/10.1109/PACT.2017.56
https://doi.org/10.1109/LCA.2014.2299539
https://doi.org/10.1109/HPCA.2014.6835965
https://doi.org/10.1109/HPCA.2014.6835965
https://doi.org/10.1109/VLSI.2008.57
https://doi.org/10.1109/ISCA.2016.58
https://doi.org/10.1109/ISCA.2016.58
https://doi.org/10.1109/ISCA.2018.00025
https://doi.org/10.1109/ISCA.2008.16
https://doi.org/10.1109/ISPASS.2016.7482091
https://doi.org/10.1109/ISCA.2018.00075
https://doi.org/10.1109/ISCA.2018.00075
https://doi.org/10.1109/CODESISSS.2015.7331367
https://doi.org/10.1145/3178487.3178491
https://doi.org/10.1145/3178487.3178491
https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00112
https://doi.org/10.1109/HPCA.2016.7446077
https://doi.org/10.1109/HPCA.2016.7446077

	Abstract
	1 Introduction
	2 Background
	2.1 Unified Virtual Memory (UVM)
	2.2 Baseline Architecture

	3 Motivation and Characterization
	3.1 Application Programs
	3.2 Baseline Configuration
	3.3 GPU TLB Characterization
	3.4 TLB Compressibility

	4 Our Approach
	4.1 Design Challenges
	4.2 Compressed Format
	4.3 Compression
	4.4 Decompression
	4.5 Re-basing
	4.6 Design Space Exploration
	4.7 Compression in L1 TLB
	4.8 Discussion

	5 Evaluation
	5.1 Overall Performance
	5.2 Different Design Options in TLB Compression
	5.3 Comparison to an Alternative TLB Optimization
	5.4 Using Large Pages

	6 Related Work
	7 Concluding Remarks
	References

