
A Compression-Compilation Co-Design Framework Towards Real-Time Object
Detection on Mobile Devices

Yuxuan Cai1∗, Geng Yuan1∗, Hongjia Li1∗, Wei Niu2, Yanyu Li1,
Xulong Tang3, Bin Ren2, Yanzhi Wang1

1Northeastern University
2College of William and Mary

3University of Pittsburgh
1{cai.yuxu, yuan.geng, li.hongjia, li.yanyu, yanz.wang}@northeastern.edu,

2wniu@email.wm.edu, 2bren@cs.wm.edu, 3tax6@pitt.edu

Abstract

The rapid development and wide utilization of object de-
tection techniques have aroused requirements for both accu-
racy and speed of object detectors. In this work, we propose
a compression-compilation co-design framework to achieve
real-time YOLOv4 inference on mobile devices. We propose
a novel fine-grained structured pruning, which maintain high
accuracy while achieving high hardware parallelism. Our
pruned YOLOv4 achieves 48.9 mAP and 17 FPS inference
speed on an off-the-shelf Samsung Galaxy S20 smartphone,
which is 5.5× faster than the original state-of-the-art detector
YOLOv4.

Introduction
Object detection is widely adopted in numerous computer
vision tasks with a wide range of applications, such as au-
tonomous driving, robot vision and human-computer inter-
action. However, the state-of-the-art object detection works
are either accuracy-oriented using a large model size (Liu
et al. 2016; Bochkovskiy, Wang, and Liao 2020) with
high inference latency or speed-oriented using a lightweight
model but sacrificing accuracy (Sandler et al. 2018; Huang,
Pedoeem, and Chen 2018). None of them can satisfy the the
accuracy and latency demands of practical applications on
mobile devices simultaneously.

Weight pruning is a promising candidate solution for this
issue, which has been demonstrated as an effectively ap-
proach to reduce extensive computation and memory inten-
sity of DNN models (He et al. 2019). Generally, unstruc-
tured pruning (Han et al. 2015) and structured pruning (Wen
et al. 2016) are the two main trendy schemes of weight prun-
ing. However, they are either hard to achieve hardware accel-
eration or suffering from notable accuracy degradation (Ma
et al. 2019). The pattern-based pruning (Ma et al. 2020) is
proposed to overcome these issues by incorporating fine-
grained unstructured pruning in a hardware-aware fashion.
But it is only applicable to convolutional (CONV) layers
with 3×3 kernels, significantly limiting its deployment in
object detection tasks.

∗These Authors contributed equally.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Block

Block Block

DNN Weights

}}

m filters
n c

ha
nn
els

Channel
Pruning

Filter
Pruning

flt 2
flt 3

flt 1
ch 1 ch 2 ch (n-2) ch n

flt 4

Block
ch (n-1)ch 3

4-D Weight Tensor Format

2-D Weight Matrix Format

Figure 1: Fine-grained structured pruning for CONV and FC
layers using 4D tensor and 2D matrix representation.

In this paper, we propose compression-compilation co-
design framework, which can achieve real-time and high ac-
curacy object YOLOv4 detection inference on mobile plat-
forms.

Here is an overview of our framework:

• We use a fine-grained structured pruning scheme as the
model compression technique, which combines the ad-
vantage of high accuracy and the capability of achieving
high hardware-parallelism.

• Under our compiler-assisted optimization, with compara-
ble accuracy to state-of-the-art object detectors, our pro-
posed framework achieves real-time object detection on
mobile devices.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15997



Framework Design
Fine-grained Structured Pruning
Figure 1 shows the fine-grained structured pruning scheme
in 4D weight tensor format and 2D weight matrix for-
mat. Fine-grained Structured Pruning is an extension of
the coarse-grained structured pruning that prunes whole fil-
ters/channels, or rows/columns in matrix-based computa-
tion. The entire weight matrix is divided into a number of
equal-sized blocks, then the entire column(s) and/or row(s)
of weights are pruned within each block. Compared to the
coarse-grained structured pruning, block-based pruning pro-
vides a finer pruning granularity to better preserve the DNN
model accuracy. And a high hardware parallelism is also
achieved by maintaining an appropriate structural regular-
ity according to the block-punched pruning constraints. It
is particularly suitable for high-efficient DNN inference on
resource-limited mobile devices. In addition to the 3×3
CONV layer, it can also be mapped to other types of DNN
layers, such as 1×1 CONV layer and FC layer.

As our block-based pruning divides the weight matrix into
blocks, the block size affects both the accuracy and the hard-
ware acceleration. A smaller block size can provide higher
structural flexibility but at the cost of reduced speed. While
larger block size can better leverage the hardware paral-
lelism, but it may cause more severe accuracy loss. We show
the results of accuracy (mAP) vs. speed (FPS) using differ-
ent block size in Figure 2.

Compiler Optimization
Our fine-grained structured pruning relies on the compiler
optimizations to extract the fine-grained structure informa-
tion in pruned models and generate optimized code that can
run on mobile CPU and GPU efficiently. It first compacts
the model storage with a novel compression format called
BCS (Blocked Compressed Storage format), and then per-
forms computation reorder to reduce the branches within
each thread and eliminate the load imbalance among threads.

BCS stores non-zero weights only as Compressed Sparse
Row format (CSR) with an even better compression ratio by
further compressing the index with a hierarchical structure.

4

6

8

10

12

47

48

49

50

51

52

53

4x4 8x4 16x4 32x4

FP
S

m
AP

FPS and mAP in different block size

mAP FPS

Figure 2: Accuracy (mAP) vs. speed (FPS) of different block
size pruning results.

Figure 3: Real-time detection on Samsung S20 smartphone.

Traditional CSR needs to store each non-zero weight with
an explicit column index. Our proposed block-based prun-
ing preserves non-zero weights in identical columns in each
block, thus leading to many repeated column indices if we
use CSR. BCS eliminates this redundancy with a hierarchi-
cal compression on the column index only.

Moreover, our compiler employs a similar optimization
flow (i.e., model compaction and computation reorder and
other optimizations) to support all compiler optimizations
for pattern-based pruning as PatDNN (Niu et al. 2020).

Experiments and Demonstrations
Experimental Setup
We evaluate our framework on an off-the-shelf Samsung
Galaxy S20 smartphone, which has a Qualcomm Snap-
dragon 865 Octa-core CPU and a Qualcomm Adreno 650
GPU. Each test runs on 50 different input frames (images),
with the average speed results reported. Our work is de-
rived based on YOLOv4, with 320×320 input size. The MS
COCO dataset is used for training and evaluation. We denote
mAP as the Average Precision under IoU 0.5 threshold and
AP@[.5:.95] as the Average Precision under IoU from 0.5
to 0.95.

Evaluation of Fine-grained Structured Pruning
We first evaluate the accuracy and compression rate of
our proposed fine-grained structured pruning. As mentioned
above, block size affects both accuracy and hardware ac-
celeration performance. We adopt 8×4 as our block size,
i.e. 4 consecutive channels of 8 consecutive filters. The de-
tails of the impact of different block sizes are discussed
in ablation study . The original YOLOv4 model contains

#Weights #Weights
Comp. Rate #FLOPs mAP AP@[.5:.95] FPS

64.36M 1× 35.8G 57.3 38.2 3.5

16.11M 3.99× 10.48G 55.1 36.5 7.3
8.04M 8.09× 6.33G 51.4 33.3 11.5
6.37M 10.1× 5.48G 50.9 32.8 13
4.59M 14.02× 3.95G 48.9 31.6 17

Table 1: Accuracy and speed under different compression
rates.

15998



Approach Input Size backbone #Weights #FLOPs mAP AP@[.5:.95] FPS
CenterNet-DLA (Duan et al.) 512 DLA34 16.9M 52.58G 57.1 39.2 1.9

CornerNet-Squeeze (Law et al.) 511 - 31.77M 150.15G - 34.4 0.3
SSD (Liu et al.) 300 VGG16 26.29M 62.8G 43.1 25.1 4.2

MobileNetv2-SSDLite (Sandler et al.) 300 MobileNetv2 3.38M 1.36G - 22.1 41
YOLOv4 (Bochkovskiy, Wang, and Liao) 320 CSPDarknet53 64.36M 35.5G 57.3 38.2 3.5
YOLO-Lite (Huang, Pedoeem, and Chen) 224 - 0.6M 1.0G - 12.26 36

YOLOv3-tiny (Redmon and Farhadi) 320 Tiny Darknet 8.85M 3.3G 29 14 14
YOLOv4-tiny (Bochkovskiy, Wang, and Liao) 320 Tiny Darknet 6.06M 4.11G 40.2 - 11

Ours 320 CSPDarknet53 4.59M 3.95G 48.9 31.6 17

Table 2: Accuracy (mAP) and speed (FPS) comparison with other object detection approaches.

FPS vs mAP on MS COCO dataset

FP
S

0

5

10

15

20

mAP
20 29 38 47 56 65

YOLOv3-tiny

YOLOv4-tiny

SSD

CenterNet
YOLOv4

Ours-14x

Ours-10x
Ours-8x

Ours-4x

YOLOv3

Figure 4: The accuracy (mAP) and speed (FPS) comparison
of our framework under different compression rate and dif-
ferent approaches.

64.36M weights and requires 35.8G floating-point opera-
tions (FLOPs). As shown in Table 1, by applying our fine-
grained structured pruning, we achieve the compression rate
up to 14× (in weights) with 48.9 mAP. The weight number
decreases to 4.59M and FLOPs is reduced to 3.59G. With
92.87% weights and 88.97% FLOPs reduced, our model still
maintains a decent accuracy, with only 8.3 mAP loss.

As shown in Table 1, we reduce 92.87% of weights
and 88.97% of computations with only 8.3% mAP loss on
COCO 2014 dataset. We also demonstrate when we reduce
the compression rate, we can reach the mAP of 0.509 and
0.514 under 8× and 10× compression rate.

Evaluation of Our Framework
Field tests are made on a Samsung S20 smartphone under
different scenarios, as shown in Figure 3. Demo videos can
be found on the website12.

And to further validate the effectiveness of our frame-
work, we compare our pruned YOLOv4 with several rep-
resentative works. To make fair comparisons, all the re-
sults (including the reference works) are evaluated under
our compiler optimizations. As shown in Table 2, by ap-
plying our block-punched pruning, compared to original

1https://youtu.be/fDOdMReskjQ
2https://www.bilibili.com/video/BV1bz4y1y7CR/

Pruning method #Weights #FLOPs mAP FPS

Evenly Prune 10.38M 6.2G 50.5 8
Unevenly Prune 8.04M 6.2G 51.4 11.5

Table 3: Evenly Prune vs. Unevenly Prune.

YOLOv4 model, we achieve the compression rate up to 14×
(in weights) with 48.9 mAP. The number of weights de-
creases to 4.59M and FLOPs is reduced to 3.59G. Under
a similar number of computations and even having a smaller
model size, our pruned YOLOv4 consistently outperforms
YOLOv3-tiny and YOLOv4-tiny in terms of mAP and FPS.
This indicates our proposed block-punched pruning is a
more desired method to achieve a smaller model size while
maintaining the mAP compared to training a small model
from scratch. Compared with the full-size object detectors,
our work has fairly accuracy but much faster inference speed
(5.5× faster than state-of-the-art detector YOLOv4). The re-
sults also indicate our GPU-CPU collaborative computation
scheme effectively accelerates the inference speed and im-
proves FPS.

Figure 4 demonstrates the mAP and FPS of our pruned
YOLOv4 under different compression rates and the results
are compared with representative reference works. Our op-
timized model lies in top right of the figure, and outper-
forms YOLOv3, SSD, YOLOv3-tiny and YOLOv4-tiny in
both accuracy and speed. Unlike the lightweight approaches,
which simply trade the mAP for FPS, our approach provides
a Pareto Optimality that maintains both the mAP and FPS.

Ablation Study
Ablation Study on pattern-based pruning. Despite the
promising performance that pattern-based pruning can
achieve, it has the restriction of kernel size to be 3, while
in non-3×3 layers it cannot be applied. Unfortunately, in
object detection approaches such as YOLOv4, the ratio of
3×3 CONV layers is 83.31% in total weights, which lim-
its the highest compression rate of pattern-based pruning to
5.99×. Therefore, we compare pattern-based pruning and
our block-punched pruning scheme under compression rate
of 2×, 3×, 4×, 5×, respectively. Additionally, we demon-
strate the result under our block-punched pruning scheme
with 8×, 10× and 14 × compression rate. In Figure 5, we
plot the mAP curve and FPS bar under different compres-

15999



FP
S

0

5

10

15

20

m
AP

Compression Rate

Ours FPS

2 43 5 14108

Pattern mAP Pattern FPS
Ours mAP

Comparison of Pattern-based
 Pruning and Ours

30.0

37.5

45.0

52.5

60.0

Figure 5: mAP and FPS comparison of pattern-based prun-
ing and ours.

sion rate. We can see when the compression rate is below 3×
pattern-based pruning has higher accuracy as it is more flex-
ible. When the compression rate increases, for pattern-based
pruning, we have to prune more weights in each 3×3 CONV
layer, because non-3×3 layers can not be pruned. The ex-
tremely high layer-wise prune ratio results in a sharp drop
down of the curve. Pattern-based pruning has higher infer-
ence speed compared to our block-punched pruning. How-
ever, the compression rate ceiling limits the inference speed.
Ours scheme can reach higher speed when compression rate
increases, and ours do not suffer from sharply accuracy drop
down.

Ablation study on layer-wise compression rate be-
tween different kernel size. YOLOv4 contains only 3×3
kernel size and 1×1 kernel size in CONV layers. We be-
lieve these 2 types of CONV layers have different levels
of sensitivity in pruning process, therefore we conduct 2
groups of experiments. Under the same number of FLOPs,
we evenly prune all the layers in one group. And in another
group, the compression rate of 3×3 CONV layers is 1.15×
higher than in 1×1 CONV layers. As shown in Table 3, the
evenly pruned model exhibits lower accuracy and lower in-
ference speed than the unevenly pruned model. Since 3×3
CONV layers contributes 81.4% of the total FLOPs, it can
be concluded that compression rates in these layers illustrate
a higher impact on the overall performance.

References
Bochkovskiy, A.; Wang, C.-Y.; and Liao, H.-Y. M. 2020.
YOLOv4: Optimal Speed and Accuracy of Object Detec-
tion. arXiv preprint arXiv:2004.10934 .

Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; and Tian, Q.
2019. Centernet: Keypoint triplets for object detection. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 6569–6578.

Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning both

weights and connections for efficient neural network. In Ad-
vances in neural information processing systems (NeurIPS).
He, Y.; Liu, P.; Wang, Z.; Hu, Z.; and Yang, Y. 2019. Filter
pruning via geometric median for deep convolutional neural
networks acceleration. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR).
Huang, R.; Pedoeem, J.; and Chen, C. 2018. YOLO-LITE: a
real-time object detection algorithm optimized for non-GPU
computers. In 2018 IEEE International Conference on Big
Data (Big Data), 2503–2510. IEEE.
Law, H.; Teng, Y.; Russakovsky, O.; and Deng, J. 2019.
Cornernet-lite: Efficient keypoint based object detection.
arXiv preprint arXiv:1904.08900 .
Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu,
C.-Y.; and Berg, A. C. 2016. SSD: Single Shot MultiBox
Detector. In ECCV.
Ma, X.; Guo, F.-M.; Niu, W.; Lin, X.; Tang, J.; Ma, K.; Ren,
B.; and Wang, Y. 2020. Pconv: The missing but desirable
sparsity in dnn weight pruning for real-time execution on
mobile devices. In Thirty-Fourth AAAI conference on artifi-
cial intelligence (AAAI).
Ma, X.; Lin, S.; Ye, S.; He, Z.; Zhang, L.; Yuan, G.; Tan,
S. H.; Li, Z.; Fan, D.; Qian, X.; Lin, X.; Ma, K.; and Wang,
Y. 2019. Non-Structured DNN Weight Pruning – Is It Ben-
eficial in Any Platform?
Niu, W.; Ma, X.; Lin, S.; Wang, S.; Qian, X.; Lin, X.; Wang,
Y.; and Ren, B. 2020. Patdnn: Achieving real-time DNN ex-
ecution on mobile devices with pattern-based weight prun-
ing. In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS).
Redmon, J.; and Farhadi, A. 2018. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767 .
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H.
2016. Learning structured sparsity in deep neural net-
works. In Advances in Neural Information Processing Sys-
tems (NeurIPS).

16000


