
Distance-in-Time versus Distance-in-Space
Mahmut Taylan Kandemir

mtk2@psu.edu
Pennsylvania State University

State College, PA, USA

Xulong Tang
tax6@pitt.edu

University of Pittsburgh
Pittsburgh, PA, USA

Hui Zhao
Hui.Zhao@unt.edu

University of North Texas
Denton, TX, USA

Jihyun Ryoo
jihyunryoo@gmail.com

Pennsylvania State University
State College, PA, USA

Mustafa Karakoy
m.karakoy@yahoo.co.uk

TUBITAK-BILGEM
Turkey

Abstract
Cache behavior is one of the major factors that influence the
performance of applications. Most of the existing compiler
techniques that target cache memories focus exclusively on
reducing data reuse distances in time (DIT). However, current
manycore systems employ distributed on-chip caches that
are connected using an on-chip network. As a result, a reused
data element/block needs to travel over this on-chip network,
and the distance to be traveled – reuse distance in space (DIS)
– can be as influential in dictating application performance as
reuse DIT. This paper represents the first attempt at defining
a compiler framework that accommodates both DIT and DIS.
Specifically, it first classifies data reuses into four groups: G1:
(low DIT, low DIS), G2: (high DIT, low DIS), G3: (low DIT,
high DIS), and G4: (high DIT, high DIS). Then, observing that
reuses in G1 represent the ideal case and there is nothing
much to be done in computations in G4, it proposes a “reuse
transfer” strategy that transfers select reuses between G2
and G3, eventually, transforming each reuse to either G1 or
G4. Finally, it evaluates the proposed strategy using a set of
10 multithreaded applications. The collected results reveal
that the proposed strategy reduces parallel execution times
of the tested applications between 19.3% and 33.3%.

CCSConcepts: •Computer systems organization→Mul-
ticore architectures; • Software and its engineering→
Compilers.

Keywords: Data locality, Manycore architecture, Code trans-
formation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00
https://doi.org/10.1145/3453483.3454069

ACM Reference Format:
Mahmut Taylan Kandemir, Xulong Tang, Hui Zhao, Jihyun Ryoo,
Mustafa Karakoy. 2021. Distance-in-Time versus Distance-in-Space.
In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI ’21), June
20–25, 2021, Virtual, Canada. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3453483.3454069

1 Introduction
One of the main factors affecting application performance
in different single-core and multicore architectures is “data
locality”, which corresponds to the fraction of “data reuses”
that are caught in on-chip caches. Compiler, OS and hard-
ware literature is full of data locality enhancement proposals
and experimental evidence clearly demonstrates the suc-
cess of these proposals in both single-core [14, 35, 36] and
multi-core systems [4, 31, 44, 68, 69]. As a result, many of
the published locality enhancement techniques have found,
their ways into commercial hardware, compiler, and OS.
For a long time, data locality has been interpreted in a

very specific sense that has strong ties to cache hierarchies
[15, 16, 27, 51]. In this specific interpretation, a data access
is said to exhibit data locality if it hits in a cache memory. In
a similar vein, one can talk about a program exhibiting good
L1 (resp. L2) locality if a majority of the program’s data ac-
cesses are satisfied from L1 (resp. L2) cache. From a compiler
angle, to maximize the number of cache hits, one of the main
optimization targets has been reducing (ideally, minimizing)
“reuse distance” – the distance between two accesses to the
same data element (temporal reuse) or data block (spatial
reuse). Generally speaking, the smaller this reuse distance,
the higher the chances of converting that data reuse into
locality, i.e., catching the reused data element/block while
it is still in the cache. It is important to emphasize that, the
distance we are talking about is actually the distance-in-time
(DIT), irrespective of how we measure it – e.g., in terms of
intervening loop iterations, unique data accesses, program
instructions, or execution cycles.
While this specific “time centric” view of data reuse [70]

served very well in the past and has been the cornerstone of
numerous compiler and hardware based data locality opti-
mizations, it is being increasingly insufficient in capturing

665

https://doi.org/10.1145/3453483.3454069
https://doi.org/10.1145/3453483.3454069

PLDI ’21, June 20–25, 2021, Virtual, Canada Mahmut Taylan Kandemir, Xulong Tang, Hui Zhao, Jihyun Ryoo, Mustafa Karakoy

locality, especially with the emergence of large manycore
systems. This is primarily because such memory systems
typically employ multiple L2/L3 cache banks connected to
one another using an on-chip network, and consequently,
the ultimate latency experienced by a data access is not just
a function of whether it hits in the cache or not, but also
a function of the “physical distance” between the core that
makes the request and the cache/memory component that
has the requested data in it. Consider as an example two
different data accesses (issued by the same core) that hit
in the on-chip L2 cache, which is physically distributed (in
forms of “banks”) across the 2D space of a manycore chip. If
the L2 bank from which the first access is satisfied is much
closer to the issuing core than the L2 bank from which the
second access is satisfied, the latency observed with the first
access would normally be much lower than that observed
with the second access, though both the accesses are techni-
cally considered to be “L2 cache hits”. Similarly, two different
last-level cache (LLC) misses that go to different memory
banks can also experience significantly different latencies,
depending on the distance between the requesting core and
the memory bank that holds the requested data.
It is interesting to note that, while this “distance-from-

data” (or, simply “distance”) concept is crucial in shaping
the performance of applications running on emerging many-
cores, unfortunately, it has not been thoroughly investigated
so far in the literature. Further, this concept of distance-in-
space (DIS) is entirely different from DIT – while the latter
captures the intervening events in time (e.g., loop iterations,
unique data accesses, instructions, or execution cycles) be-
tween two reuses of a given data element/block, the former
captures the physical distance (e.g., the number of on-chip
network links in a modern manycore) between two reuses.

To better highlight the difference between DIS and DIT, let
us consider the simple code fragment shown in Figure 1(a).
In this example, there are two uses (i.e., a reuse) of, say,
𝑎[3], via reference 𝑎[𝑖] in iteration 𝑖 = 3 and via reference
𝑎[𝑖 − 2] in iteration 𝑖 = 5. In this case, DIT for this reuse is
2 (iterations), i.e., the next use of 𝑎[3] is 2 iterations later
from its current use, whereas, as depicted in Figure 1(b), DIS
for the same reuse is 6 links. We want to make it clear at
this point that, while DIT is architecture agnostic (however
whether it will lead to a cache hit is not), DIS depends on the
computation-to-core mapping, data-to-cache bank mapping,
as well as the underlying architectural topology and network
routing policies.While DIT has been investigated extensively
in literature, DIS has not. We believe that, in the absence of
such investigation, existing compiler and hardware based
approaches to data locality, motivated primarily with the
goal of reducing DIT, are being increasingly insufficient to
capture and optimize data access latencies, especially given
the fact that distances are increasing in each new generation
of (larger) architecture. The overreaching goal of this paper is
to fill this gap in research, by exploring the relationship and

for i = 3, N do

… = a[i] + a[i-2]

(a)

Executing i = 3

(b) Executing i = 5

a[3]

Figure 1. An example to highlight DIS and DIT.

MCDRAM MCDRAM MCDRAMMCDRAM

3
 D

D
 R

4
 C

H
A

N
N

E
L

S

3
 D

D
 R

4
 C

H
A

N
N

E
L

S

EDC EDC EDC EDC

EDC EDC EDC EDC

DDR MC DDR MC

Tile

MISC

PCIe

Gen 3 D
M

I

MCDRAM MCDRAM MCDRAMMCDRAM

36 ti les

Connected by

2D mesh

interconnect

2 x 16

1 x 4

X 4

DMI

Figure 2. Knight’s Landing (KNL) block diagram.

interaction between DIT and DIS. More specifically, focusing
on affine programs with known loop bounds and scenarios
where parallelism decisions are made at compile time (static
parallelism), this paper makes the following contributions:
• It classifies a given set of data reuses (e.g., extracted from

a loop nest) into four groups: G1: (low DIT, low DIS), G2:
(high DIT, low DIS), G3: (low DIT, high DIS), and G4:
(high DIT, high DIS). This classification is guided by two
separate target thresholds, Δ𝑟 , specifying the high/low
boundary for DIT and Δ𝑠 specifying the high/low bound-
ary for DIS. The experimental data collected from 10 mul-
tithreaded application programs indicate that, in a 36 core
single-chip architecture, G1, G2, G3 and G4 contribute,
on average, to 38.0%, 13.5%, 12.8% and 35.6%, of all reuses
(averaged over all loop nests of all programs).
• Observing that reuses in G1 represent the ideal case (where

a data element is reused quickly – increasing chances that
it will be caught in one of the on-chip caches at the time
of reuse – and the distance between that cache and the
requesting core is short) and there is nothing much to be
done in computations in G4, it proposes a “reuse trans-
fer” strategy that transfers select reuses from G2 and G3,
eventually, transforming each reuse to either G1 or G4.
Applying this optimization strategy leads to performance
improvements (reduction in parallel execution times) rang-
ing between 19.3% and 33.3%, averaging on 26.2%.

2 Target Architecture
In this work, we use Intel (KNL) [60] – shown in Figure 2 –
as our target system, though our approach is applicable to
other manycore architectures as well. More specifically, it is
applicable to any multicore/manycore system (not just mesh-
based ones), as long as the underlying network topology is

666

Distance-in-Time versus Distance-in-Space PLDI ’21, June 20–25, 2021, Virtual, Canada

exposed to the compiler, as well as to multi-chip systems
(see Section 5.14). The KNL CPU accommodates 36 active
physical tiles (nodes), with each tile comprising two cores,
with two vector processing units (VPUs) per core. There is a
1-Mbyte level-2 (L2) cache (34 nsec access latency [55]) that
is shared between the two cores. Two types of memory are
supported in KNL – Multi-Channel DRAM (MCDRAM) and
Double Data Rate (DDR) memory. MCDRAM can be used in
3 modes: (1) cache mode, in which it is a cache for DDR; (2)
flat mode, in which it is treated like standard memory in the
same address space as DDR; and (3) hybrid mode, in which
a portion of it is cache and the remainder is flat.

KNL employs a 2D mesh interconnect to connect the tiles,
memory controllers, I/O controllers, and other components
on the chip. KNL leverages a distributed tag directory to
keep the coherency of its L2 caches. It supports three “cluster
modes” for address space allocation: (1) all-to-all, (2) quad-
rant, and (3) sub-NUMA. In all-to-all, addresses are uniformly
distributed. For the quadrant mode, the on-chip interconnect
is partitioned into four quadrants. In the sub-NUMA mode,
the mesh network is divided into four NUMA regions and
accesses from both L2 and memory are limited within a sub-
region. While most of our experiments are collected using
KNL, our approach can work with different cache manage-
ment strategies as well, as long as that strategy is exposed
to the compiler. That is, as long as we know how the last-
level cache is managed, we can modify our reuse transfer
formulation accordingly.

3 Proposed Compiler Support
3.1 Background on Affine Computations
In this paper, our focus is on affine programs, where each
loop index (iterator) has affine bounds, and array subscript
expressions are affine functions of enclosing loop index vari-
ables and loop-independent variables. Note however that, if
a loop nest contains both affine and non-affine references,
our approach still attempts to transform it considering only
the affine references for data reuse optimization while mak-
ing conservative dependency assumptions (regarding non-
affine references). Our approach handles all affine programs
that satisfy the SCoP-constraints [9], including imperfectly-
nested loops. Also, the transformation-matrices that our
approach explores are not restricted to unimodular trans-
formations (in fact, in our experiments, more than 40% of
the determined transformations were non-unimodular). Our
approach is, however, restricted to iteration re-ordering; cur-
rently, we do not handle statement re-ordering within an
iteration. Finally, our compiler also includes a limited sym-
bolic analysis to handle non-affine references – e.g., it can
determine, for a loop iterator 𝑖 , 𝑥 [𝑖2] and 𝑥 [𝑖2 + 1] refer to
different memory-locations.

Consider as an example the following loop nest:
for 𝑖1 = 1, 𝑁1 do

for 𝑖2 = 𝑖1, 𝑁2 do
... 𝐵 [𝑖1 + 2, 𝑖1 + 𝑖2 − 1]

Here, the loop bounds can be expressed as 1 ≤ 𝑖1 ≤ 𝑁1
and 𝑖1 ≤ 𝑖2 ≤ 𝑁2. On the other hand, the array access shown

can be expressed as 𝐿𝑡 + 𝑜 , where 𝐿 =

(
1 0
1 1

)
, 𝑡 =

(
𝑖1
𝑖2

)
,

and 𝑜 =

(
2
−1

)
. When there is no confusion, we will use

{𝐿, 𝑜} to denote this array access. When a given loop nest
contains a mix of affine and non-affine references (as most
loops in our tested programs), our approach focuses only on
the affine ones.
A linear loop transformation represented by matrix 𝑇

transforms results in a different scheduling of the iterations
of the loop it is applied to.1 For example, if, before the trans-

formation, we have 𝑡 =

(
𝑖1
𝑖2

)
, after the transformation

represented by 𝑇 =

(
0 1
1 0

)
, the new loop indices can be

expressed as 𝑡 ′ =
(
𝑖 ′1
𝑖 ′2

)
= 𝑇𝑡 =

(
𝑖2
𝑖1

)
, that is, 𝑖 ′1 and 𝑖

′
2 are

the new loop indices. After this transformation, both loop
bounds and array subscript expressions can be re-written as
follows by using Fourier-Motzkin Elimination (FME) [21]:

for 𝑖 ′1 = 1, 𝑁2 do
for 𝑖 ′2 = 1,𝑚𝑖𝑛(𝑖 ′1, 𝑁1) do

... 𝐵 [𝑖 ′2 + 2, 𝑖 ′2 + 𝑖 ′1 − 1]
For a given array 𝐴, Φ𝑎 is used the denote the set of refer-

ences to it – each member of Φ𝑎 can be represented {𝐿𝑞, 𝑜𝑞},
where 𝐿𝑞 and 𝑜𝑞 are as defined above.

For a given loop nest, we use matrix 𝑁 to denote the
iteration-to-core assignment. Specifically, for a given loop
iteration 𝑡 , 𝑁𝑡 gives the core it is mapped to. In other words,
𝑁𝑡 gives the ID of the node to which computation (loop
iteration) 𝑡 is assigned for execution. Since our target archi-
tecture is two-dimensional, 𝑁 is a matrix of 2×𝑛, where 𝑛 is
the number of loops in the loop nest being optimized. Note
that entries of 𝑁 include mod (core count) operations, to
map a large iteration space into a much smaller core space.
Further, our approach can work with any 𝑁 function that
maps iterations to cores (it is input to our approach and deter-
mining a good 𝑁 is not a goal of this paper). In fact, instead
of having an explicit 𝑁 , our approach can directly accept
iteration-to-core mapping constraints in our formulation.

3.2 DIT and DIS
Next, we formally define DIT and DIS. Let {𝐿1, 𝑜1} ∈ Φ𝑎 and
{𝐿2, 𝑜2} ∈ Φ𝑎 two references to array 𝐴2. Let us assume, for
two iterations 𝑡1 and 𝑡2 (𝑡1 < 𝑡2), we have 𝐿1𝑡1+𝑜1 = 𝐿2𝑡2+𝑜2,

1While in this work we mainly focus on loop transformations, data trans-
formations can also be potentially used for reuse-transfer, either standalone
or in conjunction with loop transformations.
2It is possible that 𝐿1 = 𝐿2.

667

PLDI ’21, June 20–25, 2021, Virtual, Canada Mahmut Taylan Kandemir, Xulong Tang, Hui Zhao, Jihyun Ryoo, Mustafa Karakoy

that is, the same data element is accessed by both {𝐿1, 𝑜1}
and {𝐿2, 𝑜2}, i.e., it is reused. In this case, 𝑡2 − 𝑡1 is referred to
as the reuse distance in time (DIT).3 Let 𝑁 denote a matrix
that maps a given loop iteration to a location in the 2D grid.
Assuming that 𝑙1 = 𝑁𝑡1 and 𝑙2 = 𝑁𝑡2 (𝑙1 and 𝑙2 are called
location vectors), in this work, 𝑙2 − 𝑙1 is termed as the reuse
distance in space (DIS). The operation “−” calculated the
Manhattan Distance between two location vectors.
Before proceeding any further, let us explain 𝑡2 − 𝑡1 and

𝑙2 − 𝑙1 in more detail. 𝑡2 − 𝑡1 represents the time difference
(measured in terms of loop iterations) between two succes-
sive accesses to the same data element. The higher this dis-
tance, the lower the chances that the data will be caught
while it is in one of the on-chip caches in the manycore sys-
tem. In comparison, 𝑙2 − 𝑙1 represents the physical distance
(measured in terms of the number of communication links –
hops – in the two-dimensional mesh) between two succes-
sive reuses of the same data element. Note that, the larger
this distance, the higher latency in the second access (one
occurring at iteration 𝑡2) would experience. This higher la-
tency is due to two main reasons: firstly, more links to travel
mean higher latency, and secondly, more links also mean
higher chances for contention on the on-chip network. As
an example, let us assume that, two iterations, (2 3)𝑇 and
(4 3)𝑇 , access the same data element and these iterations
are mapped to cores (1 1)𝑇 and (3 5)𝑇 , respectively. That
is, when executing iteration (2 3)𝑇 , core (1 1)𝑇 accesses
the data element, and then later, when executing iteration
(4 3)𝑇 , core (3 5)𝑇 accesses the same data element. In this
case, the time difference between the two reuses (DIT) is
(4 3)𝑇 − (2 3)𝑇 = (2 0)𝑇 ,4 whereas the spatial difference
(DIS) is (3 5)𝑇 − (1 1)𝑇 = (2 4)𝑇 .

3.3 Classification of Data Reuses
Based on these temporal and spatial distances of reuse,5 we
can classify reuses in a loop nest 6 into four disjoint groups:
• G1: ∀𝑡1, 𝑡2, 𝑙1, and 𝑙2 involved in a data-reuse : 𝑡2 − 𝑡1 ≤

Δ𝑟 and 𝑙2 − 𝑙1 ≤ Δ𝑠
• G2: ∀𝑡1, 𝑡2, 𝑙1, and 𝑙2 involved in a data-reuse : 𝑡2 − 𝑡1 ≤

Δ𝑟 and 𝑙2 − 𝑙1 > Δ𝑠
• G3: ∀𝑡1, 𝑡2, 𝑙1, and 𝑙2 involved in a data-reuse : 𝑡2 − 𝑡1 >

Δ𝑟 and 𝑙2 − 𝑙1 ≤ Δ𝑠
• G4: ∀𝑡1, 𝑡2, 𝑙1, and 𝑙2 involved in a data-reuse : 𝑡2 − 𝑡1 >

Δ𝑟 and 𝑙2 − 𝑙1 > Δ𝑠

3As mentioned earlier, this distance concept has taken a lot attention in the
past, and in most compiler-based works, it is customary to measure it in
terms of “loop iterations”.
4Assuming that the inner loop iterations 𝐾 times, this corresponds to 2𝐾
iterations.
5Our term “spatial distance of reuse” is not to be confused with the conven-
tional concept of “spatial reuse”, which is essentially a temporal reuse at a
cache block granularity.
6For now, we focus on one loop nest a time. Our proposed approach can
consider multiple loop nests at the same time.

Core

G1for i I1..I2

for j J1..J2

… = B[i]

G2

G3for i I1..I2

for j J1..J2

… = B[i]

for i I1’..I2’
for j J1’..J2’

… = B[i]

for i I1..I2

for j J1..J2

… = A[j]

G4

for i I1..I2

for j J1..J2

… = A[j]

for i I1’..I2’
for j J1’..J2’

… = A[j]

(a) (b) (c) (d)

Figure 3. An example illustrating the four groups of reuses.

Here, Δ𝑟 represents a “threshold” that draws the boundary
between short and long “temporal distance”, and Δ𝑠 repre-
sents a “threshold” that draws the boundary between short
and long “spatial/physical distance”. Later we discuss howwe
can select suitable values for Δ𝑟 and Δ𝑠 . These four groups
(types) of reuses are illustrated in Figure 3.

It is important to note that the reuses in the G1 category
represent the ideal case where both temporal distance (DIT)
and spatial distance (DIS) are short, and at the opposite end,
G4 represents the worst case where both temporal and spa-
tial distances are long. In comparison, the reuses in G2 and
G3 are good from one aspect (temporal or spatial distance)
and bad (not preferable) from the other. Based on this, our
optimization strategy presented and evaluated in the rest of
this paper, which targets reducing both temporal and spatial
reuse distances, is built upon the following philosophy:
We do not want to change the reuses in G1 as they are

already good, and changing the reuses in G4 is not going to
be trivial as it cannot be done without affecting (distorting)
reuses in other groups. Considering G2 and G3 however, wemay
want to transfer reuses (by transforming the loop iterations
as explained below) between them such that the reuses are
mapped (after the transformation) to either G1 or G4, so that
at least some of them (those that are mapped to G1) will benefit
the execution. Clearly, in the ideal case, we want to maximize
the number of reuses moved to G1.

This strategy is based on an observation that will be quan-
tified later (Figures 13 and 14): if the the compiler indiscrimi-
nately tries to move each and every data reuse to the G1 cat-
egory, it ends up having too many constraints to satisfy, and
as a result, many computations/iterations go untransformed
(unoptimized), as it cannot find a suitable transformation
matrix for them. Instead, our approach performs a tradeoff
by transferring some reuses to G1 and some others to G4.

3.4 Reuse Transfer
Figure 4 depicts the high level view of the concept of “reuse
transfer”, the strategy proposed in this work to improve
performance. Let us first explain why the reuses in categories
G2 and G3 may not be very beneficial as far as data locality
and application performance are concerned. In the case of

668

Distance-in-Time versus Distance-in-Space PLDI ’21, June 20–25, 2021, Virtual, Canada

G1

G2

G3

G4

G1

G2

G3

G4

(a)

G1

G2

G3

G4

G1

G2

G3

G4

(b)

Figure 4. Reuse transfer from G2/G3 to G1/G4.

G2 where DIT is short and DIS is long, the reused data is not
likely to arrive at the requested core at the time of reuse, as
illustrated Figure 3(b). That is, when the data access request
is issued by core, the data has still a long way to come. In
contrast, reuses in G3 exhibit a different type of problem.
Specifically, in this case, DIS is short (as shown in Figure 3(c)),
but this (nearby) data will not be needed for a long time (as
DIT is long). Note that this nearby location could instead be
used for some other data, one with a shorter reuse in time.
Now, considering these two types of reuses (one belonging to
G2 and the other one belonging to G3), we ask the question
of whether one can create two different reuses – one in G1
and one in G4. In this way, we can expect good performance
from the (newly created) reuse in G1.
It is important to emphasize that “reuse transfer” is im-

plemented in this work by using computation (loop) trans-
formations. While one can potentially use also data layout
transformations (i.e., changing the layout of data arrays in
memory) to create a similar impact of reuse transfer, since
layout transformation requires in general complex whole
program analysis, we postpone its investigation in the con-
text of DIT+DIS optimization to a future study.

3.5 Problem Formulation
Let us start by formulating the conditions that need to be sat-
isfied for a reuse to belong to groups G1-G4. In the following
formulation, we use 𝑡𝑖 to denote a loop iteration vector
and 𝑙 𝑗 to represent the location vectors in the 2D grid. We
assume that 𝑡𝑖 and 𝑙 𝑗 used below are within their respective
bounds; so, we do not list the boundary conditions explicitly.
Also, 𝐿𝑘 and 𝑜𝑘 correspond to an access matrix and offset
vector for a reference to the array whose elements are reused.
Finally, as before, 𝑁 is used to represent the mapping from
iteration space (vectors) to 2D grid.

In mathematical terms, for G1, we have:
𝐿1𝑡1 + 𝑜1 = 𝐿2𝑡2 + 𝑜2 (1)
𝑡2 − 𝑡1 ≤ Δ𝑟 (2)
𝑙2 − 𝑙1 ≤ Δ𝑠 (3)

𝑙1 = 𝑁𝑡1 (4)
𝑙2 = 𝑁𝑡2 (5)

It is important to note that, the first constraint here ensures
the “existence of data reuse” (that is, two references access
the samememory location), whereas the next two constraints
guarantee that the reuse belongs to G1. Finally, the last two
constraints establish the connection between iteration space

and core space (in two-dimensional manycore architecture).
Similarly, for G2, we have the following constraints:

𝐿1𝑡1 + 𝑜1 = 𝐿2𝑡2 + 𝑜2 (6)
𝑡2 − 𝑡1 ≤ Δ𝑟 (7)
𝑙2 − 𝑙1 > Δ𝑠 (8)

𝑙1 = 𝑁𝑡1 (9)
𝑙2 = 𝑁𝑡2 (10)

The corresponding constraints for G3 are:
𝐿1𝑡1 + 𝑜1 = 𝐿2𝑡2 + 𝑜2 (11)
𝑡2 − 𝑡1 > Δ𝑟 (12)
𝑙2 − 𝑙1 ≤ Δ𝑠 (13)

𝑙1 = 𝑁𝑡1 (14)
𝑙2 = 𝑁𝑡2 (15)

And finally, we have the following constraints for G4:
𝐿1𝑡1 + 𝑜1 = 𝐿2𝑡2 + 𝑜2 (16)
𝑡2 − 𝑡1 > Δ𝑟 (17)
𝑙2 − 𝑙1 > Δ𝑠 (18)

𝑙1 = 𝑁𝑡1 (19)
𝑙2 = 𝑁𝑡2 (20)

Clearly, the third constraints for G2 and G3 can be re-
written as

𝑁 (𝑡2 − 𝑡1) > Δ𝑠 and 𝑁 (𝑡2 − 𝑡1) ≤ Δ𝑠 ,
respectively. Let us assume now that the corresponding itera-
tion space is transformed using a loop transformation matrix
𝑇 . We focus on two different reuses – (𝑡1, 𝑡2) belonging to
G2 and (𝑡3, 𝑡4) belonging to G3. After the transformation, we
would want to see either (i) the reuse in G2 is transformed
to G1 and the reuse in G3 is transformed to G4 (as shown
in Figure 4(a)), or (ii) the reuse in G2 is transformed to G4
and the reuse in G3 is transformed to G1 (as shown in Fig-
ure 4(b)). The constraints that capture the first possibility
can be expressed as follows:7

𝐿1𝑇
−1𝑡1 + 𝑜1 = 𝐿2𝑇

−1𝑡2 + 𝑜2 (21)
𝑇 (𝑡2 − 𝑡1) ≤ Δ𝑟 (22)

𝑁𝑇 (𝑡2 − 𝑡1) ≤ Δ𝑠 (23)
𝐿3𝑇

−1𝑡3 + 𝑜3 = 𝐿4𝑇
−1𝑡4 + 𝑜4 (24)

𝑇 (𝑡4 − 𝑡3) > Δ𝑟 (25)
𝑁𝑇 (𝑡4 − 𝑡3) > Δ𝑠 (26)

And, similarly, for the second possibility, we have:
𝐿1𝑇

−1𝑡1 + 𝑜1 = 𝐿2𝑇
−1𝑡2 + 𝑜2 (27)

𝑇 (𝑡2 − 𝑡1) > Δ𝑟 (28)
𝑁𝑇 (𝑡2 − 𝑡1) > Δ𝑠 (29)
𝐿3𝑇

−1𝑡3 + 𝑜3 = 𝐿4𝑇
−1𝑡4 + 𝑜4 (30)

𝑇 (𝑡4 − 𝑡3) ≤ Δ𝑟 (31)
𝑁𝑇 (𝑡4 − 𝑡3) ≤ Δ𝑠 (32)

If we can find a 𝑇 that satisfies either the first group of
constraints above or the second group, this means that we

7Note that𝑇𝑡 𝑗 −𝑇𝑡𝑖 = 𝑇 (𝑡 𝑗 − 𝑡𝑖) , as𝑇 is non-singular.

669

PLDI ’21, June 20–25, 2021, Virtual, Canada Mahmut Taylan Kandemir, Xulong Tang, Hui Zhao, Jihyun Ryoo, Mustafa Karakoy

transfer either 1) one reuse from G2 to G1 and one reuse
from G3 to G4, or 2) one reuse from G3 to G1 and one reuse
from G2 to G4.
Of course, any such 𝑇 should also satisfy data dependen-

cies. More specifically, if there is a dependence from itera-
tion 𝑡1 to iteration 𝑡2, i.e., 𝑡1 −→ 𝑡2, after the transformation
𝑇𝑡1 −→ 𝑇𝑡2 should hold. In other words, if 𝑑 = 𝑡2 − 𝑡1 is the
dependence vector, after the transformation 𝑇 , 𝑇𝑑 should be
lexicographically positive. We refer to this as dependence
constraint. Since it needs to be satisfied in all loop trans-
formations considered in this work, we will not show it
explicitly in the remainder of the paper.

Let us now consider the {(𝐺2→ 𝐺1), (𝐺3→ 𝐺4)} reuse
transfer in more detail. First, from Expressions (8-10), we
have 𝑁 (𝑡2 − 𝑡1) > Δ𝑠 , which gives us (𝑡2 − 𝑡1) > 𝑁 −1Δ𝑠 .
Considering this along with Expression (7), we can obtain
𝑁 −1Δ𝑠 < (𝑡2 − 𝑡1) ≤ Δ𝑟 . Similarly, from Expressions (13-15),
we can derive (𝑡4 − 𝑡3) ≤ 𝑁 −1Δ𝑠 , and combining this with
Expression (12) gives us Δ𝑟 < (𝑡4 − 𝑡3) ≤ 𝑁 −1Δ𝑠 . Now, after
transformation 𝑇 , based on Expressions (22-23), we have
𝑇 (𝑡2 − 𝑡1) ≤ 𝑚𝑖𝑛{Δ𝑟 , 𝑁 −1Δ𝑠 } and, based on Expressions (25-
26), we have 𝑇 (𝑡4 − 𝑡3) > 𝑚𝑎𝑥{Δ𝑟 , 𝑁 −1Δ𝑠 }. Putting these
four newly derived constraints together,

𝑁 −1Δ𝑠 < (𝑡2 − 𝑡1) ≤ Δ𝑟 (33)
Δ𝑟 < (𝑡4 − 𝑡3) ≤ 𝑁 −1Δ𝑠 (34)

𝑇 (𝑡2 − 𝑡1) ≤ 𝑚𝑖𝑛{Δ𝑟 , 𝑁 −1Δ𝑠 } (35)
𝑇 (4−𝑡3) > 𝑚𝑎𝑥{Δ𝑟 , 𝑁 −1Δ𝑠 } (36)

gives us the conditions that need to be satisfied to have
the {(𝐺2 → 𝐺1), (𝐺3 → 𝐺4)} reuse transfer. The next
subsection discusses our solution strategy for this system of
constraints, and gives our formal compiler algorithm that
implements that strategy. Note that expressions similar to
Expressions (33-36) can be dereived for the reuse transfer
{(𝐺2→ 𝐺4), (𝐺3→ 𝐺1)} as well.
Discussion: At this point, one may ask why we only focus
on reuse transfers {(𝐺2 → 𝐺1), (𝐺3 → 𝐺4)} and {(𝐺2 →
𝐺4), (𝐺3 → 𝐺1)}, and do not consider other possibilities,
such as {(𝐺2 → 𝐺1), (𝐺3 → 𝐺1), (𝐺4 → 𝐺1)}. There are
two main reasons for this. First, there is a limit on how much
reuse distance in space and reuse distance in time can be
exploited. For example, as we demonstrate later in our ex-
perimental evaluations, trying to move all data reuses to
the G1 category creates too many “conflicts” in finding loop
transformation (𝑇) matrices, and as a result, a large fraction
of the original loop iterations remain untransformed (unopti-
mized). Second, from an optimization viewpoint, G2 and G3
are the best categories to target, as they can be transitioned
to G1 by improving only one of the metrics (either DIT or
DIS). In comparison, there is no point in trying to transfer
the reuses in the G1 category to other categories, and reuses
in G4 are hard to transfer in general, as in order to do so, one
needs to improve both DIT and DIS (i.e., it is very difficult

to find loop transformations to improve DIT and DIS as the
same time, if both are not good to begin with).

3.6 Solution Strategy and Compiler Algorithm
Based on the formulation above, the goal is to find a𝑇 , a loop
transformation matrix, such that one of the two scenarios
identified in the previous subsection is satisfied, for 𝑡1, 𝑡2, 𝑡3
and 𝑡4. It is to be noted however that, in a given loop nest,
there are typically lots of iterations (and consequently lots of
data reuses) and, if we write inequalities for all iterations, the
resulting system can be overly constrained. Further, there is
the question of how to determine suitable Δ𝑟 and Δ𝑠 values
to target. Clearly, depending on the values of Δ𝑟 and Δ𝑠 , the
membership of reuses to groups (G1-G4) can change.
Below, we first discuss our proposed approach at a high

level, and then give a detailed compiler algorithm that im-
plements it. As discussed earlier in Section 3.4, our approach
is based on the concept of “reuse transfer”, which transfers
reuses from G2 and G3 to G1 and G4. Let us assume, for now,
that both Δ𝑟 and Δ𝑠 are given a priori. Later in experimental
evaluation we study the impact of different Δ𝑟/Δ𝑟 values.
Our approach starts by identifying all data reuses in the

target loop nest and assigning them to four groups described
above (G1, G2, G3 and G4). After this partitioning, the rest of
our approach focuses only on the iterations that are involved
in the reuses mapped to G2 and G3 but not mapped to G1
and G4. The reason behind this is to ensure that we do not
disturb the reuses that are originally mapped to G1 and G4.
Now, let 𝑄 denote the set of iterations that are involved in
the reuses mapped to G2 and G3, but not mapped to G1 and
G4. Further, we use symbol 𝑅𝑘 to denote that set of reuses
that are originally in group 𝐺𝑘 .
Next, we select a reuse < 𝑡1, 𝑡2 > from G2 and a reuse

< 𝑡3, 𝑡4 > from G3, and determine a loop transformation
matrix (using Fourier-Motzkin Elimination (FME)). FME [21]
is a technique that is used to solve a system of inequalities
(note that a given equality can always be converted to two
inequalities, i.e., 𝑎 = 𝑏 means 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎). FME employs
a method to reduce the dimension of a linear system of
inequalities by one without changing feasibility. By keeping
reducing the dimension one by one, we eventually reach the
one-dimensional case, for which we can easily test feasibility.
Note that 𝑇 maps either 1) < 𝑡1, 𝑡2 > to G1 and < 𝑡3, 𝑡4 >

to G4, or 2) < 𝑡1, 𝑡2 > to G4 and < 𝑡3, 𝑡4 > to G1. Since this
system is not overly constrained, it is very likely to find a
𝑇 . Then, we use this 𝑇 to transfer “as many data reuses as
possible” from G2 and G3 to G1 and G4 (more specifically, at
each step, we either move one reuse from G2 to G1 and one
reuse from G3 to G4, or, one reuse from G3 to G1 and one
reuse from G2 to G4). In mathematical terms, as we transfer
reuses, we also drop the corresponding loop iterations from
𝑄 ; that is, at any given point, 𝑄 contains the loop iterations
“yet to be transformed”. When none of the remaining reuses
in G2 and G3 can be transferred using this 𝑇 anymore, we

670

Distance-in-Time versus Distance-in-Space PLDI ’21, June 20–25, 2021, Virtual, Canada

Algorithm 1 Algorithm of Reuse Transfer.
INPUT: Nested Loop (D); Temporal Threshold Δ𝑟 ; Spatial Threshold Δ𝑠 ; Iteration-

to-core Assignment (N);
OUTPUT: 𝐺1,𝐺2,𝐺3, and𝐺4
1: 𝐺1,𝐺2,𝐺3,𝐺4,𝐺𝑡𝑒𝑚𝑝2, 𝑎𝑛𝑑 𝐺𝑡𝑒𝑚𝑝3 ← ∅
2: // Initial partition of loop nest D
3: <𝐺1,𝐺2,𝐺3,𝐺4>← 𝑅𝑒𝑢𝑠𝑒_𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑦𝑖𝑛𝑔 (𝐷)
4: while𝐺2 ≠ ∅ and𝐺3 ≠ ∅ do
5: < 𝑡𝑖 , 𝑡 𝑗 > 𝑓 𝑟𝑜𝑚 𝐺2, < 𝑡𝑚, 𝑡𝑛 > 𝑓 𝑟𝑜𝑚 𝐺3
6: // Find the transformation matrix
7: 𝑇 ← 𝐹𝑜𝑢𝑟𝑖𝑒𝑟_𝑀𝑜𝑡𝑧𝑘𝑖𝑛_𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑁,< 𝑡𝑖 , 𝑡 𝑗 >,< 𝑡𝑚, 𝑡𝑛 >,Δ𝑟 ,Δ𝑠)
8: for < 𝑡𝑙 , 𝑡𝑘 > 𝑖𝑛 𝐺1 do
9: if 𝑇 transfers < 𝑡𝑙 , 𝑡𝑘 > to𝐺2,𝐺3, or𝐺4 then
10: // Drop𝑇 and continue to find another𝑇
11: 𝑇 ← 𝑁𝑈𝐿𝐿

12: for 𝑡𝑝 , 𝑡𝑞 , 𝑡𝑟 , 𝑡𝑠 that have been transferred by any𝑇 do
13: if There exist dependency between 𝑡𝑝 , 𝑡𝑞 , 𝑡𝑟 , 𝑡𝑠 and 𝑡𝑖 , 𝑡 𝑗 then
14: 𝑑𝑎 = 𝑡𝑖 − 𝑡𝑝 , 𝑑𝑏 = 𝑡𝑞 − 𝑡𝑖 , 𝑑𝑐 = 𝑡 𝑗 − 𝑡𝑟 , and 𝑑𝑑 = 𝑡𝑠 − 𝑡 𝑗
15: if Any of 𝑇𝑑𝑎 , 𝑇𝑑𝑏 , 𝑇𝑑𝑐 , and 𝑇𝑑𝑑 is not lexicographically positive

then
16: 𝑇 ← 𝑁𝑈𝐿𝐿

17: Conduct the same dependence check for 𝑡𝑚, 𝑡𝑛
18: if 𝑇 ≠ 𝑁𝑈𝐿𝐿 then
19: Select and remove < 𝑡𝑖 , 𝑡 𝑗 > from𝐺2 and < 𝑡𝑚, 𝑡𝑛 > from𝐺3
20: Add𝑇 < 𝑡𝑖 , 𝑡 𝑗 > to𝐺1 (𝑜𝑟 𝐺4) and Add𝑇 < 𝑡𝑚, 𝑡𝑛 > to𝐺4 (𝑜𝑟 𝐺1)
21: while𝐺2 ≠ ∅ and𝐺3 ≠ ∅ do
22: Select and remove < 𝑡𝑖 , 𝑡 𝑗 > 𝑓 𝑟𝑜𝑚 𝐺2, < 𝑡𝑚, 𝑡𝑛 > 𝑓 𝑟𝑜𝑚 𝐺3
23: if 𝑇 < 𝑡𝑖 , 𝑡 𝑗 > 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐺1 (𝑜𝑟 𝐺4) 𝑎𝑛𝑑 𝑇 < 𝑡𝑚, 𝑡𝑛 >

𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐺4 (𝑜𝑟 𝐺1) then
24: Add 𝑇 < 𝑡𝑖 , 𝑡 𝑗 > to 𝐺1 (𝑜𝑟 𝐺4) and Add 𝑇 < 𝑡𝑚, 𝑡𝑛 > to

𝐺4 (𝑜𝑟 𝐺1)
25: Continue
26: 𝐺𝑡𝑒𝑚𝑝2 ← 𝐺𝑡𝑒𝑚𝑝2∪ < 𝑡𝑖 , 𝑡 𝑗 >,𝐺𝑡𝑒𝑚𝑝3 ← 𝐺𝑡𝑒𝑚𝑝3∪ < 𝑡𝑚, 𝑡𝑛 >,
27: 𝐺2← 𝐺2 ∪𝐺𝑡𝑒𝑚𝑝2 and𝐺3← 𝐺3 ∪𝐺𝑡𝑒𝑚𝑝3

28: Output𝐺1,𝐺2,𝐺3, and𝐺4

select another loop transformation matrix and repeat the
steps above (i.e., transferring as many reuses as possible from
G2 and G3 to G1 and G4 and dropping the corresponding
iterations from 𝑄). This process is repeated until either G2
or G3 becomes empty, or we cannot find any transformation
that can transfer the remaining reuses from G2/G3 to G1/G4.

We want to emphasize that, this approach is distinguished
from the previous approaches in at least two important ways.
First, unlike the previous approaches, our strategy considers
both reuse in time and reuse in space. Second, as opposed
to the existing approaches, ours can transform the different
iterations of a given loop nest using different transformation
matrices (whereas in existing approaches a single transfor-
mation matrix is used for the entire loop nest).
The pseudo-code for our compiler algorithm is given in

Algorithm 1. It takes four input parameters including a loop
nest (D), the temporal distance threshold (Δ𝑟), the spatial
distance threshold (Δ𝑠), and the iteration to core mapping
(N). The output of our algorithm is the four groups of loop
iterations after applying our reuse transfer optimization. At
the beginning, we identify all the reuse opportunities inside
a loop nest, to form the initial four sets 𝐺1, 𝐺2, 𝐺3, and
𝐺4 (line 2). Then, we pick up reuses from 𝐺2 and 𝐺3 and
use FME to find a transformation matrix 𝑇 (line 7). Note
that, we only choose a legal transformation matrix 𝑇 that
does not violate any dependencies in the loop body. More
specifically, if there is a data reuse 𝑟 (between iterations 𝑡1
and 𝑡2) which belongs to category 𝐺𝑘 where 𝑘 ∈ {2, 3}, we

transfer it, using 𝑇 , to a category 𝐺𝑙 where 𝑙 ∈ {1, 4} only
if, for all dependences 𝑑𝑎 = 𝑡1 − 𝑡𝑝 , 𝑑𝑏 = 𝑡𝑞 − 𝑡1, 𝑑𝑐 = 𝑡2 − 𝑡𝑟 ,
and 𝑑𝑑 = 𝑡𝑠 − 𝑡2, where 𝑡𝑝 , 𝑡𝑞 , 𝑡𝑟 , and 𝑡𝑠 have already been
transformed (via, potentially, other transformation matrices),
𝑇𝑑𝑎 , 𝑇𝑑𝑏 , 𝑇𝑑𝑐 , and 𝑇𝑑𝑑 are lexicographically positive. This
means that, when we are transforming 𝑡1 and 𝑡2 using a
transformation matrix, we ensure that all dependences that
involve 𝑡1 or 𝑡2 (𝑑𝑎 , 𝑑𝑏 , 𝑑𝑐 , and 𝑑𝑑) are preserved. Note also
that, we choose/use the calculated 𝑇 only if it does not hurt
the reuses which have been already captured in 𝐺1 (lines 8 to
11). Otherwise (i.e., if this 𝑇 cannot transfer any remaining
reuses from 𝐺2 or𝐺3 to other groups without affecting any
reuse in𝐺1), it means we are done with this𝑇 , and use other
reuses from𝐺2 and𝐺3 to find other transformation matrices.
This step guarantees that the sizes of 𝐺2 and 𝐺3 (i.e., 𝑞) are
decreasing monotonically. Then, we use 𝑇 to eliminate as
many reuses as possible from𝐺2 and𝐺3 (lines 21 to 26). The
asymptotic complexity of this algorithm is𝑂 (𝑃𝑄2), where 𝑃
is the total number of reuses in𝐺1, and𝑄 is the total number
of reuses in𝐺2 and𝐺3 combined. Since we calculate/evaluate
transformation matrix for each reuse pair from𝐺2 and 𝐺3,
and each transformation matrix 𝑇 is checked against the
reuses in 𝐺1 in case it affects the reuses in 𝐺1.

3.7 Implementation
We wrote a new compiler pass for manipulating integer tu-
ple relations and sets (represented by Presburger Formulas
[29]), and added it to LLVM [43]. This pass analyzes a given
loop nest, identifies all temporal and spatial data reuses, and
determines the loop transformations (𝑇 matrices) needed to
transfer data reuses from groups G2 and G3 to groups G1 and
G4. As output, our pass produces sub-loop nests, each with
its own sub-iteration space. This code generation is possible
as, using Presburger Formulas, we are able to represent a
given non-convex set (iteration space) as a union of two or
more convex sets. Clearly, using multiple transformations
for a given loop nest makes rewriting the transformed code
quite challenging. Our code rewriting phase generates code
to scan the points in the union of a number of convex sets
(each corresponding to one of the loop transformation matri-
ces found). The result for a given input nest is, in most cases,
a large, imperfectly-nested output loop nest. Also, while we
performed experiments targeting an Intel KNL type of sys-
tem, our approach is applicable to any manycore architecture
whose data access protocol (e.g., SNUCA vs DNUCA) and
underlying topology are exposed to the compiler.

4 Experimental Setup
Platforms: Our experiments are carried out using both a
detailed multicore/manycore simulator [11] and a 2D mesh-
based manycore system [60]. The simulation-based experi-
ments are mainly performed to collect fine-grain execution
statistics (that could not be collected from the execution on

671

PLDI ’21, June 20–25, 2021, Virtual, Canada Mahmut Taylan Kandemir, Xulong Tang, Hui Zhao, Jihyun Ryoo, Mustafa Karakoy

Table 1. System setup.

Manycore Size, Frequency 36 cores (6 × 6), 1 GHz, 2-issue
L1 Cache 16 KB; 8-way; 32 bytes/line
L2 Cache 512 KB/core; 16-way; 128 bytes/line
Hardware Prefetcher Stream prefetcher with 32 streams, prefetch

degree of 4, prefetch distance of 64 cache
lines

Coherence Protocol MOESI
Router Overhead 3 cycles
Memory Row Size 2 KB
On-Chip Network Frequency 1 GHz
Routing Policy X-Y routing
DRAM Controller Open-row policy using FR-FCFS scheduling

policy; 128-entry MSHR and memory
request queue

DRAM DDR4-2400; 250 request buffer entries
4 MCs; 1 rank/channel; 8 banks/rank

Row Buffer Size 2 KB
Operating System Linux 4.7
Data Distribution 2KB granularity, round-robin
across memory banks
Data Distribution 128 bytes granularity, round-robin
across LLC banks

an actual manycore system) to show the effectiveness of our
approach, as well as to conduct sensitivity experiments with
respect to various architectural parameters. Table 1 gives the
simulation parameters as well as the default values.

The proposed compiler support is implemented in LLVM
version 9.0.0 [43], using it as a source-to-source translator.
LLVM is a collection of modular and reusable compiler and
tool-chain technologies. It provides compiler designers with
a state-of-the-art SSA (static single assignment) based compi-
lation strategy capable of supporting both static and dynamic
compilation of various programming languages. The result-
ing optimized source codes are compiled using the node
compilers (gcc in the simulator and icc in the commercial
system), to generate the executable code. Most of the results
presented below are simulation results; the results collected
from Intel manycore machine are explicitly indicated.

BenchmarkPrograms: Inmost of our experimental eval-
uation, we use a set of ten multithreaded benchmark pro-
grams from PARSEC [10] to test our proposed compiler
scheme. We could not execute the original versions of three
PARSEC benchmarks – bodytrack, freqmine, and swaptions –
in our simulator, so we do not consider them in our evalua-
tions. Note that, the input dataset sizes of these applications
are increased from their original values to put pressure on the
cache and memory systems. More specifically, in blocksholes,
we tripled the number of options; in canneal, the number
of elements is increased to 1,600,000; in dedup, the input
dataset size is increased to 1.2 GB; in facesim, the number of
triangular pyramids is increased to 1,244,826 and the number
of frames is increased to 32; in ferret the number of queries
and number of images are increased to 4,096 and 164,088,
respectively; in fluidanimate, the number of frames and num-
ber of particles are increased to 20 and 18M, respectively; in
raytrace, we used 1,920 × 1,080 pixels (HDTV resolution), 10

million polygons, and 200 frames; in streamcluster, the num-
ber of points per block is set to 524,288; and finally, in vips
and x264, the number of images and number of frames are in-
creased, respectively (to 128 and 8K). The resulting datasets
vary between 33.1 MB and 1.8 GB, and LLC (L2) cache miss
rates range between 18.1% and 39.3% (in the simulator).
The detailed information on these benchmark programs

can be found in [10].
Different Versions Tested: For each of the ten benchmark
programs we have, we performed experiments with six dif-
ferent versions:
• Baseline: This is the default version. In this version, the

iteration space of a loop nest is divided into 𝑝 chunks, each
containing a set of 𝑁 /𝑝 consecutive iterations (𝑝 is the
total core count and 𝑁 is the total number of iterations),
and each chunk is scheduled on a separate core. This base-
line version already has slightly better performance than
the output codes generated by two compilers – Polly [30]
and Pluto [13] – as it includes a larger suite of conven-
tional data locality optimizations. Unless otherwise stated,
the results with the remaining versions are normalized
with respect to this version. Later in our evaluation, we
also perform experiments with several variations of this
baseline scheduling.
• Reuse Transfer: This represents the optimization strat-
egy presented and defended in this paper. As discussed
in detail, it is based on “transferring” data reuses across
different groups.
• DIT Only: This is a representative of traditional compiler

approaches that focus on minimizing only reuse distance
in time. Many previously published compiler works fall
into this category, and the specific approach that we used
is based on [33].
• DISOnly: This approach optimizes DIS aggressively, even
if doing so sacrifices some DIT optimizations opportuni-
ties. Essentially, this version mimics the approach pro-
posed in [67].
• DIS+DIT: In this version, we first apply DIT Only and

then DIS Only. The reason why we perform experiments
with this version is to demonstrate that, our proposed
approach, which is based on reuse transfer, is more than
just a combination of DIT and DIS.
• Limit: This version is designed to measure the limits of

distance in time and distance in space optimization. specif-
ically, it makes 100 experiments with DIS+DIT, each time
starting with different iterations to transform, and selects
the one that generates the best result. Although this does
not guarantee optimality, we have not observed any case
where more than 100 experiments generated a better re-
sult. A comparison of its performance against that of our
proposed reuse transfer based strategy is given later.
Note that, while our simulation experiments used all six

versions of each benchmark program, the experiments on

672

Distance-in-Time versus Distance-in-Space PLDI ’21, June 20–25, 2021, Virtual, Canada

0
20
40
60
80

100

D
a
ta

 R
e
u

s
e

B
re

a
k
d

o
w

n
 (

%
)

G1 G2 G3 G4

(a)

0
20
40
60
80

100

D
a

ta
 R

e
u

s
e

B

re
a
k
d

o
w

n
 (

%
)

G1 G2 G3 G4

(b)

Figure 5. Distribution of data reuses across four categories
(G1-G4) in the baseline. (a) temporal reuses and (b) spatial
reuses.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
a

ta
 R

e
u

s
e

B

re
a

k
d

o
w

n
 (

%
)

G1 G2 G3 G4

(a)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
a
ta

 R
e
u

s
e

B
re

a
k

d
o

w
n

 (
%

)

G1 G2 G3 G4

(b)

Figure 6. Distribution of reuses across four categories in
15 consecutive execution phases for two of our benchmark
programs. (a) blacksholes and (b) x264.

Intel manycore system used only the first five, as the last
version (Limit) can be implemented only in the simulator.
We also want to emphasize that, all the versions (including
the baseline) are compiled using the highest level of opti-
mizations and have the same degree of parallelism, i.e., in
all versions, the same set of computations are executed in
parallel. As a result, these versions differ only in how com-
putations are mapped to cores.
Also, unless otherwise stated, all experiments are con-

ducted assuming the target DIT and DIS values of Δ𝑟 =
(0 0 0 . . . 0 1)𝑇 and Δ𝑠 ∈ {(0 1)𝑇 , (0 − 1)𝑇 , (1 0)𝑇 , (−1 0)𝑇 },
respectively. Note that, this default Δ𝑟 target indicates the
best possible reuse in time (i.e., the shortest reuse distance,
which means that the reused data element/block is accessed
in two successive loop iterations 8), and that Δ𝑠 represents 1
link (hop) distance (in any of the four possible directions in
the two-dimensional mesh network). Later in our evaluations
we also report results with different Δ𝑟 and Δ𝑠 targets.

Finally, in our experiments, we used the quadrant cluster
mode (we observed that the difference of original executions
between the quadrant and sub-NUMAmode was quite small).

5 Experimental Results
5.1 Reuse Classification Results for Baseline
We start by presenting the distribution of data reuses in the
original versions of our benchmark programs (baseline). The
plots in Figure 5(a) and (b) give the distribution of tempo-
ral and spatial data reuses, respectively, into four categories
(G1 through G4) when considering the entire execution, and
Figures 6(a) and (b) show the variations of the reuses across
time for two of our application programs – blacksholes and
8This is what many traditional data locality optimizers target to achieve.

0
20
40
60
80

100

D
a

ta
 R

e
u

s
e

B

re
a

k
d

o
w

n
 (

%
)

G1 G2 G3 G4

(a)

0
20
40
60
80

100

D
a

ta
 R

e
u

s
e

B

re
a

k
d

o
w

n
 (

%
)

G1 G2 G3 G4

(b)

Figure 7. Distribution of data reuses across four categories
(G1-G4) after reuse transfers. (a) temporal reuses and (b)
spatial reuses.

Table 2. Compile-time statistics.

Benchmark Number Transformed Increase in Increase in
of𝑇 s Data Accesses Code Size Compilation Time

blacksholes {2,6,14} 88.2% 1.4x 28%
canneal {4,9,12} 93.2% 1.2x 16%
dedup {5,10,18} 90.7% 1.7x 21%
facesim {5,8,12} 84.4% 2.2x 31%
ferret {6,9,21} 86.1% 1.9x 19%
fluidanimate {2,2,2} 94.3% 2.4x 15%
raytrace {2,6,14} 81.8% 1.5x 27%
streamcluster {1,2,4} 86.7% 2.4x 29%
vips {2,3,4} 95.1% 1.8x 26%
x264 {2,5,8} 93.4% 2.1x 27%

x264. Note that each of the plots in Figures 6(a) and (b) shows
a representative execution segment that includes 15 consecu-
tive phases. One can make two main observations from these
plots in Figure 5 and Figure 6. First, all benchmark programs
exhibit a variety of (somewhat balanced) reuses. The distri-
butions of temporal and spatial data reuses across four reuse
categories (G1-G4) are similar. And secondly, the reuse type
exhibits a somewhat consistent behavior: neighboring execu-
tion phases have similar distributions, with variations among
distributions corresponding mostly to loop nest boundaries.

5.2 Reuse Classification Results
Figures 7(a) and (b) plot the same reuse distribution results,
but this time with the compiler-optimized version (the reuse
transfer based version). Comparing these plots with the cor-
responding plots in Figure 5 clearly reveals that the proposed
compiler-based optimization transfers a lot of reuses from
groups G2 and G3 to groups G1 and G4, for both the tempo-
ral and spatial data reuses. More specifically, in the case of
temporal data reuses, the total contribution of G2+G3 in the
baseline case was 50.9% on average. After our optimization,
on the other hand, the total contribution of G2+G3 aver-
ages 27.5%, showing clearly that our approach does what it
is designed to do. The corresponding numbers in the case
of spatial data reuses are 49.8% (before optimization) and
30.6% (after optimization). In both cases, there is a corre-
sponding increase – as a result of our optimization – in the
contribution of the reuses in the G1 and G4 categories.

5.3 Compile-Time Statistics
Before presenting detailed runtime statistics, we first give
data showing the behavior of our compiler-based approach.

673

PLDI ’21, June 20–25, 2021, Virtual, Canada Mahmut Taylan Kandemir, Xulong Tang, Hui Zhao, Jihyun Ryoo, Mustafa Karakoy

0

20

40

60

80

100

N
o

rm
a
li

z
e
d

E
x
e
c
u

ti
o

n
 T

im
e

Reuse Transfer DIT Only DIS Only DIS+DIT Limit

(a)

0

20

40

60

80

100

N
o

rm
a
li

z
e
d

E
x

e
c

u
ti

o
n

 T
im

e

Reuse Transfer DIT Only DIS Only DIS+DIT

(b)

Figure 8. Normalized execution times (with respect to Baseline). (a) Simula-
tion results, and (b) Intel KNL results.

0.00

0.20

0.40

0.60

0.80

1.00

N
o

rm
a
li

z
e
d

N
e
tw

o
rk

 L
a
te

n
c
y

Reuse Transfer DIT Only DIS Only DIS+DIT Limit

Figure 9. Normalized network latency values
with different strategies.

The second column for each benchmark program in Table 2
gives the {minimum, average, maximum} number of loop
transformation matrices (i.e., number of 𝑇 s) used for the
loop nests in the benchmark programs (across all loop nests).
It can be observed from this column that, some (original) it-
eration spaces (loop nest) are divided into as many as 21
sub-iteration spaces (each transformed using its own 𝑇),
indicating that our approach successfully customizes loop
transformation matrices (𝑇 s) based on the loop nest being
optimized. The third column of the table gives the percent-
age of data accesses that got optimized by our approach,
averaged over all loop nests in the program. It can be ob-
served from these results that, on average, more than 80%
of data accesses of a loop nest got transformed by our ap-
proach using a transformation matrix, indicating that our
approach is able to optimize most of the data accesses in
these benchmarks. Note that, the main reason for our ap-
proach not being able to optimize a data access is because it
is not affine. The fourth column on the other hand gives the
increase in executable code size (over Baseline) when our
reuse transfer based approach is employed. Finally, the last
column shows the increase in compilation time, again over
the baseline versions. We see from these last two columns
that, as expected, our approach increases both the executable
size and compilation time. We want to mention however that,
when our approach is used, the largest compilation time we
observed during the experiments was still less than 1 minute.

5.4 Execution Time Results
Figure 8a plots the normalized execution times (with respect
to Baseline; lower, better), collected from our simulator, with
different versions. One canmake several critical observations
from this plot. First, for all ten benchmark programs, our pro-
posed optimization approach, which is based on reuse trans-
fer, outperforms the remaining versions, except of course
Limit. In fact, the average performance improvements (re-
duction in parallel execution time) brought by our approach,
DIT Only, DIS Only, DIS+DIT and Limit are, respectively,
26.2%, 11.4%, 7.5%, 15.9%, and 33.9%. The reason why our
approach performs better than DIT Only is that the latter
does not do anything specific to reduce the distance (in terms

of the number of communication links) between two succes-
sive reuses of the data. To illustrate this point, we present in
Figure 9 the average (on-chip) network latency values of dif-
ferent versions, collected from the simulator and normalized
to Baseline (lower, better). It is clear from these results that,
the data assesses in DIT Only spends considerably more time
in the on-chip network than those in our reuse transfer based
strategy. However, trying to optimize DIS without paying
attention to DIT is also not the best option, mainly because
keeping data close by for long durations of time prevents
other data (with shorter reuse in time) to be placed nearby.

Furthermore, it is interesting to observe that evenDIS+DIT
does not perform as well as our reuse transfer based strategy.
The main reason for this is that, aggressively optimizing first
for DIT, limits the extent/potential of DIS optimization. In
particular, DIT tries to optimize the reuses in G4 as well
(in addition to those in G3), and this, in turn, reduces some
opportunities for transferring, later, some reuses from cate-
gories G2/G3 to categories G1/G4. We present in Figure 10
the contribution of G2+G3 to all data reuses in Baseline, our
defended strategy, and DIS+DIT. It can be clearly seen that
the reuse transfer based strategy transfers many more reuses,
compared to DIS+DIT, from G2/G3 to G1/G4.

So far, all the results presented have been collected using
our cycle-accurate simulator. Figure 8b on the other hand
presents the normalized execution time results, collected
from Intel manycore architecture (Xeon Phi 7290). It can
be observed that these results are quite similar to those col-
lected from the simulator. In particular, our approach reduces
execution times (compared to the baseline version) between
13.2% and 29.2%, averaging on 22.3%. It also outperforms the
remaining versions in all ten benchmark programs tested.
While the amounts of savings observed in simulation-based
experiments and KNL-based experiments are different (as
the simulator cannot model all details), the observed trends
across different versions are similar in both cases.

5.5 Sensitivity Experiments
In this part of our experiments, we conduct a sensitivity
study, using the simulator, by changing the default values
of some of our major simulation parameters. In each experi-
ment, we change the value of one parameter from Table 1.

674

Distance-in-Time versus Distance-in-Space PLDI ’21, June 20–25, 2021, Virtual, Canada

0.00
10.00
20.00
30.00
40.00
50.00
60.00

C
o

n
tr

ib
u

ti
o

n
 o

f
G

2
+

G
3

 (
%

)

Baseline Reuse Transfer DIS+DIT

Figure 10.Contribution to the data reuses
in G2+G3 to the total number of data
reuses.

0

50

100

N
o

rm
a

li
z
e

d
E

x
e
c
u

ti
o

n
 T

im
e

Default Parameters
8x8 cores
1 MB L2/core
8KB distribution granularity across memory banks
1KB distribution granularity across cache banks

Figure 11. Results from the sensitivity ex-
periments.

50
60
70
80
90

100

(a-b) (c) (d) (e) (f) (g) (h) (i) (j)

N
o

rm
a

li
z
e

d

E
x
e
c
u

ti
o

n
 T

im
e

Reuse Exchange Strategies

Figure 12. Results with alternate
reuse transfer strategies.

G1

G2

G3

G4

G1

G2

G3

G4

(g)

G1

G2

G3

G4

G1

G2

G3

G4

G1

G2

G3

G4

G1

G2

G3

G4

(c)

(h)

G1

G2

G3

G4

G1

G2

G3

G4

(f)

G1

G2

G3

G4

G1

G2

G3

G4

(i)

(d)

G1

G2

G3

G4

G1

G2

G3

G4

G1

G2

G3

G4

G1

G2

G3

G4

(e)

(j)

G1

G2

G3

G4

G1

G2

G3

G4

Figure 13. Illustration of different reuse transfer strategies.
Note that, (a) and (b) are given in Figure 4.

The second bar for each benchmark program in Figure 11
gives the normalized execution times with a larger (8x8)
manycore. As can be seen, our approach generates better
results with a large manycore, mainly because a larger many-
core tends to increase the distances for data accesses which
increases the benefits of our approach (as it reduces distance
in space). Since a larger last level cache (third bar) captures
more reuses, it leaves a smaller scope for our optimization.
Nevertheless, we observe an average 19.9% parallel execution
time reduction (when using our approach) over Baseline. The
last two columns for each benchmark in Figure 11 give the re-
sults when the striping granularity over memory banks and
cache banks is increased. Our savings are not very sensitive
to the changes in the values of these two parameters.

5.6 Evaluating Alternate Options
In this section, our goal is to evaluate the other reuse transfer
options and compare them against our defended reuse trans-
fer strategy, i.e., {(𝐺2 → 𝐺1), (𝐺3 → 𝐺4)} and {(𝐺2 →
𝐺4), (𝐺3 → 𝐺1)}. The reuse transfer strategies evaluated
in this section are illustrated in Figure 13. It is to be noted
that, the options shown in this figure are not the only pos-
sible ones; but, we believe they cover a large search space.
Figure 12 plots the normalized execution times (with respect
to Baseline) under the different reuse transfer strategies de-
picted in Figure 13. For each strategy, the bar shown repre-
sents the average value across all ten benchmark programs.

One can make the following observations from this graph.
First, our proposed reuse transfer approach outperforms

20
30
40
50
60
70

F
ra

c
ti

o
n

 o
f

L
o

o
p

It

e
ra

ti
o

n
s

T
ra

n
s
fo

rm
e

d

(a-b) (c) (d)

Figure 14. Fraction of loop iterations that have been trans-
formed under different reuse transfer strategies. This in a
sense also gives the fraction of time an approach cannot find
a loop transformation to transform a given loop iteration.

55

65

75

85

1 2 5 10 25 50 75 100

N
o

rm
a

li
z
e

d

E
x

e
c

u
ti

o
n

 T
im

e

blacksholes canneal dedup
facesim ferret fluidanimate
raytrace streamcluster vips
x264

Figure 15. Behavior of our reuse transfer based strategy
under different number of start points.

all other reuse transfer approaches. It is particularly inter-
esting to note that, our defended reuse transfer strategy
brings 18.4% additional performance improvements over
{(𝐺2→ 𝐺1), (𝐺3→ 𝐺1), (𝐺4→ 𝐺1)}, which aggressively
tries to transfer reuses from categories G2, G3, and G4 to cat-
egory G1. To explain this result, we present in Figure 14 the
fraction of loop iterations, averaged across all loop nests in
the application, that have been transformed for reuse trans-
fer strategies (a-b), (c), and (d). It can be seen from these
results, compared to our defended reuse transfer strategy
(a-b), strategy (c) transformsmuch fewer loop iterations. This
is primarily because strategy (c) tries to transfer all types of
reuses to the G1 category, and clearly, in attempting this, it
faces with a lot of conflicts. As a result, a large fraction of
the iterations cannot be transformed under (c). Interestingly,
even a less aggressive approach, strategy (d), which tries to
transfer some of the reuses to category G1 and some to cat-
egory G2 performs better than strategy (c), by transferring
more reuses in total (Figure 14) and improving execution
time further (Figure 12).

675

PLDI ’21, June 20–25, 2021, Virtual, Canada Mahmut Taylan Kandemir, Xulong Tang, Hui Zhao, Jihyun Ryoo, Mustafa Karakoy

(0,0,…,0,0,0,1)
(0,0,…,0,0,1,0)
(0,0,…,0,1,0,0)
(0,0,…,1,0,0,0)

0

50

100

1
2

3
4

N
o

r
m

a
li

z
e

d

E
x

e
c

u
ti

o
n

 T
im

e

blacksholes

(a)

(0,0,…,0,0,0,1)
(0,0,…,0,0,1,0)
(0,0,…,0,1,0,0)
(0,0,…,1,0,0,0)

0

50

100

1 2
3

4

N
o

rm
a

li
z
e

d
E

x
e

c
u

ti
o

n
 T

im
e

vips

(b)

Figure 16. Results with different Δ𝑟 (z-axis) and Δ𝑠 (x-axis).

5.7 Comparison with the Limit Strategy
We see from Figure 8a that, the difference between our de-
fended reuse transfer strategy and the limit strategy (Limit)
is about 7.7%, on average. To explain the reason behind this
gap between the two schemes, let us first remember how
our reuse transfer strategy works. As explained in Section 3
in detail, our strategy first finds a loop transformation ma-
trix (𝑇), and then transfers using it as many data reuses as
possible from categories G2/G3 to categories G1/G4. After
that (i.e., when it comes to a point where no additional reuse
can be transformed using this loop transformation matrix),
it identifies another loop transformation matrix (a differ-
ent 𝑇), and uses it to transfer as many remaining reuses in
categories G2/G3 as possible, to categories G1/G4. Then, it
determines another loop transformation matrix, and so on.
It is possible that the algorithm can reach a point no further
reuse can be transformed. Clearly, our approach is a greedy
strategy, which tries to make the locally optimal choice at
each stage with the intent/hope of finding a global optimum
(i.e., the best set of loop transformation matrices that collec-
tively transfer as many data reuses as possible from G2/G3 to
G1/G4). However, like any greedy strategy, this approach’s
performance is affected by the “starting point”. Clearly, a dif-
ferent selection for {𝑡1, 𝑡2, 𝑡3, 𝑡4} can lead to a different set of
loop transformation (𝑇) matrices and ultimately a different
overall application performance. Since the possible values
that {𝑡1, 𝑡2, 𝑡3, 𝑡4} can take are bounded by loop bounds as
well as intrinsic data reuse characteristics of the loop nest
being optimized, the entire search space is huge. In collect-
ing the results with Limit, we made 100 experiments, each
starting with a different data reuse between 𝑡1 and 𝑡2 and
a different data reuse between 𝑡3 and 𝑡4, and selected the
option (among 100) that led to most data reuse transfers.9
Now, we present in Figure 15 the results when the number of
experiments (start points) is varied as 1 (our default value), 5,
10, 25, 50, 75, and 100 (termed as Limit in this work). It can be
observed from this plot that, the difference between 10 and
100 reuse trials seems to be quite small; so, 10 experiments
with our scheme (each with a different start point) can be
expected to produce a near-optimal performance.

9We want to mention that, when we increase the number of experiments to
200, we did not observe any better solution than the 100 experiments case.

0
10
20
30
40
50
60
70
80
90

Simulation KNL Simulation KNL

without hit/miss prediction with hit/miss predictionN
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n

T
im

e

blacksholes canneal dedup facesim ferret

fluidanimate raytrace streamcluster vips x264

Figure 17. Results comparison of each benchmark w/ pre-
diction against w/o prediction.

5.8 Results with Other Δ𝑟 and Δ𝑠 Targets
So far in our experimental evaluation, we targeted DIT and
DIS values of Δ𝑟 = (0 0 0 . . . 0 1)𝑇 and Δ𝑠 ∈ {(0 1)𝑇 , (0 −
1)𝑇 , (1 0)𝑇 , (−1 0)𝑇 }. In this part of our experimental eval-
uation, we present results with different target values for
Δ𝑟 and Δ𝑠 . More specifically, we performed experiments by
progressively increasing the values of the target Δ𝑟 and Δ𝑠
vectors. Figures 16(a) and (b) give the results (normalized
execution times) for two of our benchmark programs, black-
sholes and vips. Note that, in these plots, the Δ𝑟 values are
increased progressively from our default value (the best pos-
sible reuse vector) and similarly the Δ𝑠 values are increased
from 1 hop (our default) to 4 hops. it can be observed from
these plots that, in both the benchmarks, slightly relaxing
the target Δ𝑟 and Δ𝑠 values, i.e., setting Δ𝑟 to (0 0 0 . . . 1 0)𝑇
and Δ𝑠 to capture 2 hops generate better results than our de-
fault target thresholds. However, any further relaxation, does
not yield better results. We want to emphasize that, the ideal
Δ𝑟 and Δ𝑠 vectors to target is a function of intrinsic reuse
characteristics of the loop nest being optimized as well as the
parameters of the target manycore architecture. While our
default targets perform reasonable well, taking additional
program and architectural characteristics can result in better
targets, which we are currently exploring.

Table 3. Multiprogrammed Workloads.

Workloads Benchmarks
W1 blacksholes, canneal, dedup, facesim
W2 ferret, fluidanimate, raytrace, streamcluster
W3 vips, x264, blacksholes, canneal
W4 raytrace, streamcluster, canneal, x264
W5 fluidanimate, dedup, ferret, canneal
W6 blacksholes (2 instances), facesim (2 instances)
W7 x264 (2 copies), ferret (2 instances)
W8 raytrace (4 instances)

0

20

40

60

80

100

N
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n

T
Im

e

Reuse Transfer Aggressive Localization

Figure 18. Comparison with aggressive localization.

676

Distance-in-Time versus Distance-in-Space PLDI ’21, June 20–25, 2021, Virtual, Canada

0.0

20.0

40.0

60.0

80.0

100.0

N
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n

T
im

e

q=p q=2p q=4p q=8p q=16p

Figure 19. Comparison with different scheduling strategies.

5.9 Comparison against Aggressive Localization
We performed experiments with a modified version of our
approach that aggressively localizes all data accesses, by tar-
geting in a Δ𝑠 threshold vector that contains all 0s. In a sense,
omitting any data layout optimization, such an approach ap-
proximates the behavior of conventional strategies such as
[45]. Figure 18 shows the normalized execution times of this
strategy along with our reuse transfer results in KNL. The
results indicate that such aggressive localization performs
worse than our approach. The reason is that not consider-
ing degrees of locality prevents aggressive localization from
finding a transformation matrix in many cases.

5.10 Results with Cache Hit/Miss Predictor
The exact data block location in the system may be different
from the one assumed by the compiler. This can be the case
in particular if the DIT is large. However, our approach can
be modified to capture such scenarios as follows. We can
employ a cache miss predictor to predict the location (cache
or DRAM) of the data in question and use that location in our
distance calculation. We implemented a hit/miss predictor
based on cachemiss equations [28] and reported the collected
results from such an enhanced strategy in Figure 17. The
results indicate that this version brings about 2.4% additional
improvement over our default implementation in the case of
simulation-based experiments and 2.8% in actual KNL runs.

5.11 Comparison with Other Scheduling Strategies
As stated earlier, our baseline scheduling strategy divides
the iterations into 𝑝 groups (where each group contains a set
of consecutive iterations and 𝑝 is the total core count) and
assigns one group to each core. In this part of our evaluation,
we measure the impact of different scheduling strategies.
More specifically, instead of 𝑝 , we divide the iterations into
𝑞 ≪ 𝑝 groups, and distribute the groups (blocks of iterations)
over cores in a cyclic fashion. The results plotted in Figure 19
show the execution times of our reuse transfer based strat-
egy normalized with respect to these new baselines (𝑞 = 𝑝

corresponds to the baseline used so far). It can be observed
that our approach uniformly performs well when compared
to all these block-cyclic distributions of iterations.

5.12 Results with the HPC Challenge Benchmarks
So far, all the results presented are collected using the Par-
sec [10] suite. In this part, we present the results collected

0

20

40

60

80

100

N
o

r
m

a
li

z
e
d

 E
x
e

c
u

ti
o

n

T
im

e

Figure 20. Results from HPC Challenge benchmark suite.

0

20

40

60

80

W1 W2 W3 W4 W5 W6 W7 W8

Im
p

ro
v
e

m
e

n
t

in

W
e

ig
h

te
d

 S
p

e
e

d
u

p

(%
)

Figure 21. The per-
centage of weighted
speedup.

0

20

40

60

80

100

N
o

r
m

a
li

z
e

d

E
x

e
c

u
ti

o
n

 T
im

e

Figure 22. Results with Intel Cas-
cade Lake.

using five benchmarks from the HPC Challenge benchmark
suite [46], which contains applications with a range memory
access patterns. The results, presented in Figure 20, show
that our approach (DIS-DIT) brings an average performance
improvement of 21.6% over the baseline execution.

5.13 Results with Multiprogrammed Workloads
Wealso conducted experimentswithmultiprogrammedwork-
loads (of multithreaded applications), to capture cases when
multiple applications co-run together and the threads of the
applications can migrate during the course of execution. For
this purpose, we formed 8 workloads, each having 4 appli-
cations (see Table 3). Each application is optimized using
our approach and is parallelized over 36 threads. Also, each
core is assigned a thread from each of the four applications.
Figure 21 plots the percentage weighted speedup [18, 25, 58]
improvements (compared to the original executions) with our
optimization. We observe improvements ranging between
38.5% and 77.2%, indicating that our optimization performs
quite well in the case of multiprogrammed workloads.

5.14 Results with a Three-Level Cache
We also performed experiments with a system that has a
three-layer cache hierarchy – Intel Cascade Lake clocked at
2.5GHz. We use a two-chip configuration, each chip having
28 cores and 6 DDR4 channels and they are connected to
one another using Intel UPI. L1 and L2 caches are private,
whereas L3 cache is shared chip-wide (1.375 MB per core).
The normalized execution times with our approach are plot-
ted in Figure 22. As can be expected, while the execution
time improvements are not as high as those achieved with
KNL (due to the much larger cache capacity of Cascade Lake),
we believe these savings are still good (12.9% when averaged
over all 10 benchmark programs we have).

677

PLDI ’21, June 20–25, 2021, Virtual, Canada Mahmut Taylan Kandemir, Xulong Tang, Hui Zhao, Jihyun Ryoo, Mustafa Karakoy

6 Related Work
Compiler-based approaches. Techniques for enhancing
performance through improved data locality have been pro-
posed for both single-core and multi-core systems [4, 6, 14,
22, 23, 26, 27, 31, 37, 38, 40, 40–42, 44, 45, 50, 51, 57, 61, 64–
69, 71]. Loop and data layout transformations, have been
used to enhance the temporal and spatial locality for cache
performance and to expose inherent code parallelism [5, 72].
Wolf and Lam proposed unimodular transformations and
tiling by estimating data reuse to improve cache locality [70].
Rivera and Tseng employed compile-time data-layout trans-
formations to eliminate conflict misses [56]. Other proposed
locality optimization works include [3, 20, 49] , targeting
single-core systems. Tang et al. [67] proposed statement par-
titioning to reduce the data movement.
So et al. [59] presented an approach to deriving a cus-

tom data layout in multiple memory banks for multicore
architectures. Sung et al. developed data layout transfor-
mation as an effective compiler performance optimization
for memory-bound structured grid applications [63]. A data
layout transformation targeting multithreaded applications
running on multicores was proposed by [74].

Frameworks based on a polyhedral model to automate the
data locality optimization transformations have been pro-
posed by prior works [12, 13, 52–54] . Most of these works
exploit transformations in polyhedral space to achieve data
locality and parallelization. Compared to these polyhedral
based optimizations, our approach is different from two as-
pects. First, we consider the core location in an architecture
as a new dimension in locality optimization. Second, we op-
timize data locality considering data reuse in both time and
space, whereas most prior efforts only focus on data reuse
in time. In other words, our work is fundamentally different
from these prior studies in that it tries to combine DIT and
DIS optimizations under one unifying framework. As a re-
sult, it performs much better than DIT Only and DIS Only
as discussed in our evaluation section.
Hardware-based approaches. Chishti et al. [19] proposed
NuRAPID to decouple data placement from tag placement.
Their approach enables flexible data placement where major-
ity of frequently-accessed data are placed in the fastest sub-
arrays. Hardavellas et al. [32] investigated Reactive NUCA
which classifies the cache accesses into multiple classes and
places cache blocks at the appropriate locations in the cache.
Stenstrom et al. [62] proposed an adaptive protocol to accom-
modate migratory sharing of cache blocks. Near data comput-
ing is a recent research frontier, with specific examples such
as the newly emerging Hybrid Memory Cube (HMC) [34]
and High-Bandwidth Memory (HBM) [24]. Such memory
architectures enable certain computations to be performed
on the memory side, known as Processing in Memory (PIM)
[1, 17, 39, 48, 73]. Beckmann et al. [7, 8] proposed hardware

modifications to co-locate the data and computation to re-
duce the NUCA overheads. Ahn et al. [2] proposed a locality-
aware PIM architecture to implement simple in-memory
computation using compute-capablememory commands and
specialized instructions. Nai et al. [47] proposed a near data
graph computing architecture called GraphPIM that utilizes
PIM functionality to achieves higher performance. Unlike
these works where architecture modifications are required to
achieve optimized data locality, our work is software-based
and does not require any hardware modification. Moreover,
our approach is complementary to the PIM-based execution
paradigm and can potentially be combined with it.

7 Conclusions and Future Work
To our knowledge, this is the first work that considers both
reuse in time and reuse in space for data locality optimiza-
tion. It first formally defines (reuse) distance in time and
(reuse) distance in space, and then presents a compiler-based
optimization method that uses, as its primary optimization
knob, a novel concept called “reuse transfer”. The results col-
lected using 10 multithreaded benchmark programs clearly
show that the proposed co-optimization of reuse in time and
reuse in space results in much better results than optimizing
each in isolation (even if they are used in tandem).
As our future work, we plan to explore four research di-

rections. First, we would like to investigate the interactions
between our proposed approach and conventional loop par-
allelization techniques as well as PIM-based optimization
strategies. Second, we would like to explore architectural
support that can be employed to make our proposed op-
timization more effective. Third, work is underway in the
automatic determination of Δ𝑟 and Δ𝑠 targets via machine
learning (ML) based strategies. Finally, DIT and DIT capture
different aspects of the locality. Since the work described in
this paper is oriented toward co-optimization, we tried to
bring them (DIS and DIT) together in the same mathematical
formulation. But, by no means, this is the final word on the
matter. In fact, we believe our main contribution – the idea
of reuse transfer – is more general and can be employed
in other optimization frameworks that may want to inte-
grate DIT and DIS in a different fashion, e.g., by trying to
interpret unit distances in DIT and DIS in terms of some
(compiler-estimated) latency.

Acknowledgement
The authors sincerely thank Dr. Milind Kulkarni for shep-
herding the paper. The authors would also like to thank the
anonymous PLDI 2021 reviewers for their constructive feed-
back and suggestions. This work is supported in part by NSF
grants #1908793, #1629915, #1629129, #1763681, #2028929,
#2008398, #2011146, and #1931531, as well as a startup fund-
ing from the University of Pittsburgh.

678

Distance-in-Time versus Distance-in-Space PLDI ’21, June 20–25, 2021, Virtual, Canada

References
[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-

oung Choi. 2015. A Scalable Processing-in-memory Accelerator for
Parallel Graph Processing. In ISCA. https://doi.org/10.1145/2749469.
2750386

[2] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015.
PIM-enabled instructions: A low-overhead, locality-aware processing-
in-memory architecture. In ISCA. https://doi.org/10.1145/2749469.
2750385

[3] Jennifer M. Anderson, Saman P. Amarasinghe, and Monica S. Lam.
1995. Data and computation transformations for multiprocessors. In
PPoPP. https://doi.org/10.1145/209937.209954

[4] Jennifer M. Anderson and Monica S. Lam. 1993. Global Optimizations
for Parallelism and Locality on Scalable Parallel Machines. In PLDI.
https://doi.org/10.1145/173262.155101

[5] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. 1993. Au-
tomatic program parallelization. Proc. IEEE 81, 2 (1993), 211–243.
https://doi.org/10.1109/5.214548

[6] Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agarwal.
1999. Maps: A Compiler-Managed Memory System for Raw Machines.
In ISCA. https://doi.org/10.1145/300979.300980

[7] Nathan Beckmann andDaniel Sanchez. 2013. Jigsaw: Scalable software-
defined caches. In PACT. IEEE, 213–224. https://doi.org/10.1109/PACT.
2013.6618818

[8] Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. 2015. Scal-
ing distributed cache hierarchies through computation and data co-
scheduling. In HPCA. IEEE, 538–550. https://doi.org/10.1109/HPCA.
2015.7056061

[9] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Co-
hen, and Cédric Bastoul. 2010. The polyhedral model is more widely
applicable than you think. In International Conference on Compiler
Construction. Springer, 283–303. https://doi.org/10.1007/978-3-642-
11970-5_16

[10] Christian Bienia. 2011. Benchmarking Modern Multiprocessors.
Ph.D. Dissertation. Princeton University. ftp://ftp.cs.princeton.edu/
techreports/2010/890.pdf

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The
Gem5 Simulator. SIGARCH Comput. Archit. News (2011). https:
//doi.org/10.1145/2024716.2024718

[12] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-
pan. 2008. A Practical Automatic Polyhedral Parallelizer and Locality
Optimizer. In PLDI. https://doi.org/10.1145/1375581.1375595

[13] Uday Bondhugula, J Ramanujam, and P Sadayappan. 2013. PLuTo: A
polyhedral automatic parallelizer and locality optimizer for multicores.
http://pluto-compiler

[14] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. 1994. Compiler
Optimizations for Improving Data Locality. In ASPLOS. https://doi.
org/10.1145/195470.195557

[15] Mainak Chaudhuri. 2009. PageNUCA: Selected policies for page-grain
locality management in large shared chip-multiprocessor caches. In
HPCA. https://doi.org/10.1109/HPCA.2009.4798258

[16] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G. E.
Blelloch, B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry, and C. Wilker-
son. 2007. Scheduling threads for constructive cache sharing on CMPs.
In SPAA. https://doi.org/10.1145/1248377.1248396

[17] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan
Liu, Yu Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-in-
memory Architecture for Neural Network Computation in ReRAM-
basedMainMemory. In ISCA. https://doi.org/10.1145/3007787.3001140

[18] Nachiappan Chidambaram Nachiappan, Asit K. Mishra, Mahmut
Kademir, Anand Sivasubramaniam, Onur Mutlu, and Chita R. Das.

2012. Application-Aware Prefetch Prioritization in on-Chip Networks.
In PACT. https://doi.org/10.1145/2370816.2370886

[19] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. 2003. Distance as-
sociativity for high-performance energy-efficient non-uniform cache
architectures. InMICRO. https://doi.org/10.1109/MICRO.2003.1253183

[20] M. Cierniak andW. Li. 1995. Unifying data and control transformations
for distributed shared memory machines. In PLDI. https://doi.org/10.
1145/223428.207145

[21] G.B. Dantzig and B.C. Eaves. 1973. Fourier-Motzkin elimination and
its dual. Journal of Combinatorial T heory 14, A (1973), 288–297. https:
//apps.dtic.mil/sti/citations/AD0750674

[22] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams,
Jonathan Carter, Leonid Oliker, David Patterson, John Shalf, and
Katherine Yelick. 2008. Stencil Computation Optimization and Auto-
tuning on State-of-the-art Multicore Architectures. In ICS. https:
//doi.org/10.1109/SC.2008.5222004

[23] Wei Ding, Xulong Tang, Mahmut Kandemir, Yuanrui Zhang, and Emre
Kultursay. 2015. Optimizing Off-chip Accesses in Multicores. In Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI). https://doi.org/10.1145/
2737924.2737989

[24] Dong Uk Lee et al. 2014. 25.2 A 1.2V 8Gb 8-channel 128GB/s high-
bandwidth memory (HBM) stacked DRAM with effective microbump
I/O test methods using 29nm process and TSV. In ISSCC. https:
//doi.org/10.1109/ISSCC.2014.6757501

[25] Stijn Eyerman and Lieven Eeckhout. 2008. System-Level Performance
Metrics for Multiprogram Workloads. IEEE Micro 28, 3 (May 2008),
42–53. https://doi.org/10.1109/MM.2008.44

[26] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon
Leem, Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex
Aiken, William J. Dally, and Pat Hanrahan. 2006. Sequoia: Program-
ming the Memory Hierarchy. In ICS. https://doi.org/10.1145/1188455.
1188543

[27] Matteo Frigo and Volker Strumpen. [n.d.]. Cache Oblivious Stencil
Computations. In ICS. https://doi.org/10.1145/1088149.1088197

[28] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. 1998. Precise
Miss Analysis for Program Transformations with Caches of Arbitrary
Associativity. In ASPLOS. https://doi.org/10.1145/291069.291051

[29] Seymour Ginsburg and Edwin H. Spanier. 1966. Semigroups, Pres-
burger formulas, and languages. Pacific J. Math. 16, 2 (1966), 285–296.
https://projecteuclid.org:443/euclid.pjm/1102994974

[30] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger,
Armin Größlinger, and Louis-Noël Pouchet. 2011. Polly-Polyhedral
optimization in LLVM. In IMPACT, Vol. 2011. 1. http://perso.ens-
lyon.fr/christophe.alias/impact2011/impact-07.pdf

[31] Mary H. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei
Liao, and Monica S. Lam. 1995. Detecting Coarse-grain Parallelism
Using an Interprocedural Parallelizing Compiler. In Supercomputing.
https://doi.org/10.1109/SUPERC.1995.241596

[32] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia
Ailamaki. 2009. Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches. In ISCA. https://doi.org/10.1145/
1555754.1555779

[33] https://software.intel.com/en-us/c compilers. [n.d.]. ([n. d.]).
[34] Joe Jeddeloh and Brent Keeth. 2012. Hybrid memory cube new DRAM

architecture increases density and performance. In Symposium on VLSI
Technology (VLSIT). https://doi.org/10.1109/VLSIT.2012.6242474

[35] Mahmut Kandemir, Alok Choudhary, J Ramanujam, and Prith Banerjee.
1999. A matrix-based approach to global locality optimization. J.
Parallel and Distrib. Comput. (1999). https://doi.org/10.1006/jpdc.1999.
1552

[36] M. Kandemir, J. Ramanujam, A. Choudhary, and P. Banerjee. 2001. A
layout-conscious iteration space transformation technique. IEEE Trans.
Comput. (2001). https://doi.org/10.1109/TC.2001.970571

679

https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/2749469.2750385
https://doi.org/10.1145/2749469.2750385
https://doi.org/10.1145/209937.209954
https://doi.org/10.1145/173262.155101
https://doi.org/10.1109/5.214548
https://doi.org/10.1145/300979.300980
https://doi.org/10.1109/PACT.2013.6618818
https://doi.org/10.1109/PACT.2013.6618818
https://doi.org/10.1109/HPCA.2015.7056061
https://doi.org/10.1109/HPCA.2015.7056061
https://doi.org/10.1007/978-3-642-11970-5_16
https://doi.org/10.1007/978-3-642-11970-5_16
ftp://ftp.cs.princeton.edu/techreports/2010/890.pdf
ftp://ftp.cs.princeton.edu/techreports/2010/890.pdf
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/1375581.1375595
http://pluto-compiler
https://doi.org/10.1145/195470.195557
https://doi.org/10.1145/195470.195557
https://doi.org/10.1109/HPCA.2009.4798258
https://doi.org/10.1145/1248377.1248396
https://doi.org/10.1145/3007787.3001140
https://doi.org/10.1145/2370816.2370886
https://doi.org/10.1109/MICRO.2003.1253183
https://doi.org/10.1145/223428.207145
https://doi.org/10.1145/223428.207145
https://apps.dtic.mil/sti/citations/AD0750674
https://apps.dtic.mil/sti/citations/AD0750674
https://doi.org/10.1109/SC.2008.5222004
https://doi.org/10.1109/SC.2008.5222004
https://doi.org/10.1145/2737924.2737989
https://doi.org/10.1145/2737924.2737989
https://doi.org/10.1109/ISSCC.2014.6757501
https://doi.org/10.1109/ISSCC.2014.6757501
https://doi.org/10.1109/MM.2008.44
https://doi.org/10.1145/1188455.1188543
https://doi.org/10.1145/1188455.1188543
https://doi.org/10.1145/1088149.1088197
https://doi.org/10.1145/291069.291051
https://projecteuclid.org:443/euclid.pjm/1102994974
http://perso.ens-lyon.fr/christophe.alias/impact2011/impact-07.pdf
http://perso.ens-lyon.fr/christophe.alias/impact2011/impact-07.pdf
https://doi.org/10.1109/SUPERC.1995.241596
https://doi.org/10.1145/1555754.1555779
https://doi.org/10.1145/1555754.1555779
https://doi.org/10.1109/VLSIT.2012.6242474
https://doi.org/10.1006/jpdc.1999.1552
https://doi.org/10.1006/jpdc.1999.1552
https://doi.org/10.1109/TC.2001.970571

PLDI ’21, June 20–25, 2021, Virtual, Canada Mahmut Taylan Kandemir, Xulong Tang, Hui Zhao, Jihyun Ryoo, Mustafa Karakoy

[37] Mahmut Kandemir, Hui Zhao, Xulong Tang, and Mustafa Karakoy.
2015. Memory Row Reuse Distance and Its Role in Optimizing Appli-
cation Performance. In SIGMETRICS. https://doi.org/10.1145/2745844.
2745867

[38] Mahmut Taylan Kandemir, Jihyun Ryoo, Xulong Tang, and Mustafa
Karakoy. 2021. Compiler support for near data computing. In PPoPP.
90–104. https://doi.org/10.1145/3437801.3441600

[39] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and
Saibal Mukhopadhyay. 2016. Neurocube: A Programmable Digital
Neuromorphic Architecture with High-Density 3D Memory. In ISCA.
https://doi.org/10.1145/3007787.3001178

[40] Orhan Kislal, Jagadish Kotra, Xulong Tang, Mahmut Taylan Kan-
demir, and Myoungsoo Jung. 2018. Enhancing Computation-to-core
Assignment with Physical Location Information. In PLDI. https:
//doi.org/10.1145/3296979.3192386

[41] Orhan Kislal, Jagadish Kotra, Xulong Tang, Mahmut Taylan Kandemir,
and Myoungsoo Jung. 2017. POSTER: Location-Aware Computation
Mapping for Manycore Processors.. In PACT. https://doi.org/10.1109/
PACT.2017.20

[42] Milind Kulkarni, Keshav Pingali, Ganesh Ramanarayanan, Bruce Wal-
ter, Kavita Bala, and L. Paul Chew. 2008. Optimistic Parallelism Benefits
from Data Partitioning. SIGPLAN Not. (2008). https://doi.org/10.1145/
1353535.1346311

[43] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis and Transformation. In CGO.
https://doi.org/10.1109/CGO.2004.1281665

[44] Amy W. Lim, Gerald I. Cheong, and Monica S. Lam. 1999. An Affine
Partitioning Algorithm to Maximize Parallelism and Minimize Com-
munication. In ICS. https://doi.org/10.1145/305138.305197

[45] Qingda Lu, Christophe Alias, Uday Bondhugula, Thomas Henretty,
Sriram Krishnamoorthy, J. Ramanujam, Atanas Rountev, P. Sadayap-
pan, Yongjian Chen, Haibo Lin, and Tin fook Ngai. 2009. Data Layout
Transformation for Enhancing Data Locality on NUCA Chip Multi-
processors. In PACT. https://doi.org/10.1109/PACT.2009.36

[46] Piotr Luszczek, Jack J Dongarra, David Koester, Rolf Rabenseifner,
Bob Lucas, Jeremy Kepner, John McCalpin, David Bailey, and Daisuke
Takahashi. 2005. Introduction to the HPC challenge benchmark suite.
Technical Report. Ernest Orlando Lawrence Berkeley NationalLabora-
tory, Berkeley, CA (US). https://www.osti.gov/biblio/860347

[47] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith
Kumar, and Hyeoon Kim. 2017. GraphPIM: Enabling Instruction-
Level PIM Offloading in Graph Computing Frameworks. In HPCA.
https://doi.org/10.1109/HPCA.2017.54

[48] Lifeng Nai and Hyesoon Kim. 2015. Instruction Offloading with HMC
2.0 Standard: A Case Study for Graph Traversals. In International Sym-
posium on Memory Systems. https://doi.org/10.1145/2818950.2818982

[49] M. F. P. O’Boyle and P. M. W. Knijnenburg. 1999. Efficient paral-
lelization using combined loop and data transformations. In PACT.
https://doi.org/10.1109/PACT.1999.807573

[50] Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das. 2016.
Scheduling Techniques for GPU Architectures with Processing-In-
Memory Capabilities. In PACT. https://doi.org/10.1145/2967938.
2967940

[51] Venkata K. Pingali, Sally A. McKee,Wilson C. Hseih, and John B. Carter.
2002. Computation Regrouping: Restructuring Programs for Temporal
Data Cache Locality. In ICS. https://doi.org/10.1145/514191.514227

[52] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos.
2008. Iterative Optimization in the Polyhedral Model: Part Ii, Multidi-
mensional Time. In PLDI. https://doi.org/10.1145/1379022.1375594

[53] Louis-Noel Pouchet, Cedric Bastoul, Albert Cohen, and Nicolas Vasi-
lache. 2007. Iterative Optimization in the Polyhedral Model: Part I,
One-Dimensional Time. In CGO. https://doi.org/10.1109/CGO.2007.21

[54] Fabien Quilleré, Sanjay Rajopadhye, and Doran Wilde. 2000. Genera-
tion of Efficient Nested Loops from Polyhedra. Int. J. Parallel Program.

28, 5 (Oct. 2000), 469–498. https://doi.org/10.1023/A:1007554627716
[55] S. Ramos and T. Hoefler. 2017. Capability Models for Manycore Mem-

ory Systems: A Case-Study with Xeon Phi KNL. In IPDPS. 297–306.
https://doi.org/10.1109/IPDPS.2017.30

[56] Gabriel Rivera and Chau-Wen Tseng. 1998. Data Transformations for
Eliminating Conflict Misses. In PLDI. https://doi.org/10.1145/277650.
277661

[57] Jihyun Ryoo, Orhan Kislal, Xulong Tang, and Mahmut Taylan Kan-
demir. 2018. Quantifying and Optimizing Data Access Parallelism on
Manycores. In MASCOTS. https://doi.org/10.1109/MASCOTS.2018.
00022

[58] Allan Snavely and Dean M. Tullsen. 2000. Symbiotic Jobscheduling
for a Simultaneous Multithreaded Processor. In ASPLOS. https://doi.
org/10.1145/378993.379244

[59] B. So, M.W. Hall, and H.E. Ziegler. 2004. Custom data layout for mem-
ory parallelism. In CGO. https://doi.org/10.1109/CGO.2004.1281682

[60] Avinash Sodani. 2015. Knights landing (KNL): 2nd Generation Intel
Xeon Phi processor. In IEEE Hot Chips 27 Symposium (HCS). https:
//doi.org/10.1109/HOTCHIPS.2015.7477467

[61] Yonghong Song and Zhiyuan Li. 1999. New Tiling Techniques to
Improve Cache Temporal Locality. In PLDI. https://doi.org/10.1145/
301631.301668

[62] Per Stenström, Mats Brorsson, and Lars Sandberg. 1993. An Adaptive
Cache Coherence Protocol Optimized for Migratory Sharing. In ISCA.
https://doi.org/10.1145/173682.165147

[63] I-Jui Sung, John A. Stratton, and Wen-Mei W. Hwu. 2010. Data layout
transformation exploiting memory-level parallelism in structured grid
many-core applications. In PACT. https://doi.org/10.1145/1854273.
1854336

[64] Xulong Tang, Mahmut Kandemir, Praveen Yedlapalli, and Jagadish Ko-
tra. 2016. Improving Bank-Level Parallelism for Irregular Applications.
In MICRO. https://doi.org/10.1109/MICRO.2016.7783760

[65] Xulong Tang, Mahmut Taylan Kandemir, Mustafa Karakoy, and
Meenakshi Arunachalam. 2019. Co-optimizing memory-level par-
allelism and cache-level parallelism. In PLDI. 935–949. https://doi.org/
10.1145/3314221.3314599

[66] Xulong Tang, Mahmut Taylan Kandemir, Hui Zhao, Myoungsoo Jung,
and Mustafa Karakoy. 2019. Computing with Near Data. In SIGMET-
RICS. https://doi.org/10.1145/3376930.3376948

[67] Xulong Tang, Orhan Kislal, Mahmut Kandemir, and Mustafa Karakoy.
2017. Data Movement Aware Computation Partitioning. In MICRO.
https://doi.org/10.1145/3123939.3123954

[68] S. Verdoolaege, M. Bruynooghe, G. Janssens, and P. Catthoor. 2003.
Multi-dimensional incremental loop fusion for data locality. In ASAP.
https://doi.org/10.1109/ASAP.2003.1212826

[69] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum.
1996. Operating System Support for Improving Data Locality on CC-
NUMA Compute Servers. In ASPLOS. https://doi.org/10.1145/248208.
237205

[70] Michael E. Wolf and Monica S. Lam. 1991. A Data Locality Optimizing
Algorithm. In PLDI. https://doi.org/10.1145/113445.113449

[71] M. E. Wolf and M. S. Lam. 1991. A loop transformation theory and an
algorithm to maximize parallelism. IEEE Transactions on Parallel and
Distributed Systems (1991). https://doi.org/10.1109/71.97902

[72] M. Wolfe. 1996. Addison-Wesley, Reading, MA. In High-
Performance Compilers for Parallel Computing. https://doi.org/10.
1177/105960118200700110

[73] Jialiang Zhang, Soroosh Khoram, and Jing Li. 2017. Boosting the
Performance of FPGA-based Graph Processor Using Hybrid Memory
Cube: A Case for Breadth First Search. In FPGA. https://doi.org/10.
1145/3020078.3021737

[74] Yuanrui Zhang, Wei Ding, Jun Liu, and Mahmut Kandemir. 2011. Opti-
mizing Data Layouts for Parallel Computation on Multicores. In PACT.
https://doi.org/10.1109/PACT.2011.20

680

https://doi.org/10.1145/2745844.2745867
https://doi.org/10.1145/2745844.2745867
https://doi.org/10.1145/3437801.3441600
https://doi.org/10.1145/3007787.3001178
https://doi.org/10.1145/3296979.3192386
https://doi.org/10.1145/3296979.3192386
https://doi.org/10.1109/PACT.2017.20
https://doi.org/10.1109/PACT.2017.20
https://doi.org/10.1145/1353535.1346311
https://doi.org/10.1145/1353535.1346311
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/305138.305197
https://doi.org/10.1109/PACT.2009.36
https://www.osti.gov/biblio/860347
https://doi.org/10.1109/HPCA.2017.54
https://doi.org/10.1145/2818950.2818982
https://doi.org/10.1109/PACT.1999.807573
https://doi.org/10.1145/2967938.2967940
https://doi.org/10.1145/2967938.2967940
https://doi.org/10.1145/514191.514227
https://doi.org/10.1145/1379022.1375594
https://doi.org/10.1109/CGO.2007.21
https://doi.org/10.1023/A:1007554627716
https://doi.org/10.1109/IPDPS.2017.30
https://doi.org/10.1145/277650.277661
https://doi.org/10.1145/277650.277661
https://doi.org/10.1109/MASCOTS.2018.00022
https://doi.org/10.1109/MASCOTS.2018.00022
https://doi.org/10.1145/378993.379244
https://doi.org/10.1145/378993.379244
https://doi.org/10.1109/CGO.2004.1281682
https://doi.org/10.1109/HOTCHIPS.2015.7477467
https://doi.org/10.1109/HOTCHIPS.2015.7477467
https://doi.org/10.1145/301631.301668
https://doi.org/10.1145/301631.301668
https://doi.org/10.1145/173682.165147
https://doi.org/10.1145/1854273.1854336
https://doi.org/10.1145/1854273.1854336
https://doi.org/10.1109/MICRO.2016.7783760
https://doi.org/10.1145/3314221.3314599
https://doi.org/10.1145/3314221.3314599
https://doi.org/10.1145/3376930.3376948
https://doi.org/10.1145/3123939.3123954
https://doi.org/10.1109/ASAP.2003.1212826
https://doi.org/10.1145/248208.237205
https://doi.org/10.1145/248208.237205
https://doi.org/10.1145/113445.113449
https://doi.org/10.1109/71.97902
https://doi.org/10.1177/105960118200700110
https://doi.org/10.1177/105960118200700110
https://doi.org/10.1145/3020078.3021737
https://doi.org/10.1145/3020078.3021737
https://doi.org/10.1109/PACT.2011.20

	Abstract
	1 Introduction
	2 Target Architecture
	3 Proposed Compiler Support
	3.1 Background on Affine Computations
	3.2 DIT and DIS
	3.3 Classification of Data Reuses
	3.4 Reuse Transfer
	3.5 Problem Formulation
	3.6 Solution Strategy and Compiler Algorithm
	3.7 Implementation

	4 Experimental Setup
	5 Experimental Results
	5.1 Reuse Classification Results for Baseline
	5.2 Reuse Classification Results
	5.3 Compile-Time Statistics
	5.4 Execution Time Results
	5.5 Sensitivity Experiments
	5.6 Evaluating Alternate Options
	5.7 Comparison with the Limit Strategy
	5.8 Results with Other r and s Targets
	5.9 Comparison against Aggressive Localization
	5.10 Results with Cache Hit/Miss Predictor
	5.11 Comparison with Other Scheduling Strategies
	5.12 Results with the HPC Challenge Benchmarks
	5.13 Results with Multiprogrammed Workloads
	5.14 Results with a Three-Level Cache

	6 Related Work
	7 Conclusions and Future Work
	References

