Fluid: A Framework for Approximate Concurrency
via Controlled Dependency Relaxation

Huaipan Jiang
Pennsylvania State University
State College, USA
hzj5142@psu.edu

Vineetha Govindaraj
Pennsylvania State University
State College, USA
vzg99@psu.edu

Haibo Zhang®
Pennsylvania State University
State College, USA
huz123@psu.edu

Jack Sampson
Pennsylvania State University
State College, USA
jms1257@psu.edu

Xulong Tang
University of Pittsburgh
Pittsburgh, USA
tax6@pitt.edu

Mahmut Taylan Kandemir
Pennsylvania State University
State College, USA
mtk2@psu.edu

Danfeng Zhang
Pennsylvania State University
State College, USA
zhang@psu.edu

Abstract

In this work, we introduce the Fluid framework, a set of lan-
guage, compiler and runtime extensions that allow for the
expression of regions within which dataflow dependencies
can be approximated in a disciplined manner. Our framework
allows the eager execution of dependent tasks before their in-
puts have finalized in order to capitalize on situations where
an eagerly-consumed input has a high probability of suffi-
ciently resembling the value or structure of the final value
that would have been produced in a conservative/precise
execution schedule. We introduce controlled access to the
early consumption of intermediate values and provide hooks
for user-specified quality assurance mechanisms that can
automatically enforce re-execution of eagerly-executed tasks
if their output values do not meet heuristic expectations. Our
experimental analysis indicates that the fluidized versions of
the applications bring 22.2% average execution time improve-
ments, over their original counterparts, under the default
values of our fluidization parameters. The Fluid approach is
largely orthogonal to approaches that aim to reduce the task
effort itself and we show that utilizing the Fluid framework

“Work was done as a student at Pennsylvania State University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI °21, June 20-25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8391-2/21/06...$15.00
https://doi.org/10.1145/3453483.3454042

252

can yield benefits for both originally precise and originally
approximate versions of computation.

CCS Concepts: « Software and its engineering — Paral-
lel programming languages; Object oriented frameworks.

Keywords: Eager Execution, Approximate Computing

ACM Reference Format:

Huaipan Jiang, Haibo Zhang, Xulong Tang, Vineetha Govindaraj,
Jack Sampson, Mahmut Taylan Kandemir, and Danfeng Zhang.
2021. Fluid: A Framework for Approximate Concurrency via Con-
trolled Dependency Relaxation. In Proceedings of the 42nd ACM SIG-
PLAN International Conference on Programming Language Design
and Implementation (PLDI "21), June 20-25, 2021, Virtual, Canada.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3453483.
3454042

1 Introduction

Many recent works have examined models of approximate
computation as a means of improving performance [57]
and/or energy efficiency [29, 57] for error-tolerant and self-
correcting applications, by coping with unreliable compo-
nents [34], or executing inherently stochastic algorithms [13].
Common approaches among these models include eliding the
execution of certain tasks, or replacing an approximable task
with an entirely different computation that is easier to exe-
cute [26]. A different flavor of approximation has been stud-
ied in the form of data-race tolerant and other scheduling-
robust algorithms under weakened synchronization assump-
tions [7]). For an approximate computation approach to be
viable, the intermediate approximated values consumed by
the following tasks must be close enough to the values gen-
erated by precise computation. Note, however, that once
approximation is allowed and soundness constraints have
therefore been relaxed, there is no obvious reason that the

https://doi.org/10.1145/3453483.3454042
https://doi.org/10.1145/3453483.3454042
https://doi.org/10.1145/3453483.3454042

PLDI 21, June 20-25, 2021, Virtual, Canada

communicated value in question only be visible at the end
of an approximate computation; the time at which an ap-
proximate output becomes visible to a subsequent consumer
is at least as amenable to approximation as the process of the
production of the value itself.

This observation leads directly to the exploration of for-
warding the eager executed data. Conceptually, the execution
of any workflow can be considered as a sequence of inter-
dependent kernels and each kernel, in turn, as a sequence
of interdependent tasks. Each task can be viewed as con-
suming a set of inputs and can act in turn as a producer of
the values consumed by other tasks. In a precise computa-
tion, any particular execution represents a schedule, serial
or parallel, that obeys the dependencies expressed among
these producers and consumers. In an approximate compu-
tation, however, there can be opportunities to forward the
approximate data between the tasks. The key challenge in de-
scribing and exploiting these opportunities lies in annotating
the dependency between the tasks, as well as ensuring some
user-defined quality controllers at the boundaries between
approximate and precise computations.

To boost such approximable applications, recent studies
either break the data dependency or relax the synchroniza-
tion to increase the degree of parallelism [11, 14, 17, 24, 38,
42,44, 49, 62, 69, 71, 84]. Unfortunately, none of these works
presents a general framework which allows users to specify
the condition of breaking the dependency. As a result, in
this paper, we present Fluid, a novel paradigm for expressing
“eager execution” by relaxing the inter-kernel or inter-task
data dependency constraints. We adapt an object-oriented
model to encapsulate all accesses to the set of data structures
utilized within a particular region of approximately concur-
rent execution, and to control the data forwarding between
precise and approximate portions of execution. Fluid also
employs a user-specified “satisfaction (quality) function”, as
a means of providing a heuristic for throttling or abandon-
ing a particular path of eager computation to mitigate error.
Specific contributions of this work include:

e We propose a Fluid Framework' for data dependency re-
laxation which can operate on “partially computed” values,
and provide interfaces that let users readily express execu-
tions exploiting Fluid Concurrency for performance while
controlling the magnitude of approximation-induced errors.

e We give the details of the programming language, com-
piler and runtime support to realize Fluid as a set of pragma
extensions to C++. Our compiler consumes these pragmas
to produce standard C++ programs that interact with the
Fluid runtime system. We report that, on average, one needs
to insert only 12.4 pragmas per application program, which
corresponds to 3.9% of the total program lines.

o We evaluate the fluidized versions of eight applications
and show, on average, 22.2% latency improvements, over

The source code of Fluid is available at https://github.com/j9650/Fluid.git.

253

H. Jiang, H. Zhang, X. Tang, V. Govindaraj, J. Sampson, M. T. Kandemir, and D. Zhang

]
A

(b) gc)

L]
A

1
(@)
O

Py

(a)

Non-Fluid
Region
Fluid
Region
Non-Fluid
Method
Fluid
Task
Fluid
Data

Method Call 1
[Method Cail 2|
Method Call 3

. (d)

Figure 1. (a). Different types of task graphs in applications,
red triangles are Fluid regions while the white circle rep-
resent tasks; (b). Multiple Fluid regions between non-Fluid
regions; (c). A Fluid region with multiple output regions; (d).
Tasks invocations within a Fluid/non-Fluid region.

their precise counterparts, with 1.4% reduction in accuracy,
for empirically-chosen Fluid valve hyperparameters.

e We demonstrate that Fluid approximation cleanly com-
poses with multi-threaded applications (Edge Detection and
K-means) indicates that Fluid brings additional performance
benefits over conventional multithreading.

2 Approximated Data Dependency

In an execution model that schedules a set of producers and
consumers, there are three potential opportunities for deriv-
ing benefits from scheduling a consumer early. First, if the
input to the consumer has already attained its “final value”
before all possible updates have been applied, then starting
at the earliest point where this is true would be beneficial
for any consumer. The second case is where, while subse-
quent updates will change the value, the current value is
“indistinguishable” from the final value from the perspective
of the consumer. The consumer will generate the identical
output no matter if it consumes the current value or the
final value. Third, while subsequent updates to input X to
a consumer task C will change the value of X, and do so in
ways that change C(X), C is inherently approximate and the
difference between C(Xcyrrens) and C(Xfinar) is within the
“approximation tolerance”.

Clearly, not all code regions are amenable to approxima-
tion. Real applications consist of both precise and approx-
imable code. For instance, precise business logic may interact
with outputs produced by approximable natural language
processing kernels within a larger decision-making work-
flow. Additionally, approximability and producer-consumer
relationships can be hierarchical, e.g. inter-method approxi-
mation is possible within an approximate kernel. Figure 1(a)
shows a set of example data dependence graphs present

Fluid: A Framework for Approximate Concurrency via Controlled Dependency Relaxation

within and among kernels. These range from simple single-
producer-consumer inter-kernel sequences (leftmost) to ker-
nels decomposed into pairs of producer-consumer approx-
imable methods in a non-approximable sequence (center-
left), long chains of consumers that are producers for the
following kernel in a workflow (center-right), and multi-
producer-multi-consumer relationships (rightmost). While
clearly non-exhaustive, even these few examples point to
the diversity of dependency approximation scenarios and
the potential benefits of eager execution.

Figure 1(b) and (c) show different possible relationships
between precise (rectangle) and approximate (triangle) code
regions. Without loss of generality, we consider these regions
as single-entry: If a region is not naturally single-entry, an
additional (header) task can be added on which all other
potential points of task initiation are made dependent. We
further constrain data visibility in our model such that, for
any data that is an output of the region, there is an associ-
ated readiness function that can restrict accesses from other
regions which will, at a minimum, ensure that no subsequent
updates to the output value (which may be simple data or
an entire data structure) will be made by the producing re-
gion. More restrictive readiness functions can be used to
i) control inter-region parallelism (e.g., output barriers), ii)
enforce quality constraints and heuristics, or iii) bound the
scope required for reasoning about rollback or other specula-
tion management mechanisms. In the following sections, we
describe our specific approach to exploiting “intra-region”
concurrency for approximable regions, Fluid, in detail and
also describe our implementation of the associated compiler
and runtime support to enable its unique features.

3 Fluid Execution

In this paper, we primarily focus on the potential improve-
ments in concurrency within a single approximable region.
Our approach employs a “guard” that manages the tasks
of starting, terminating, and restarting. The start and end
of each task are controlled by associated “valve” functions
that communicate the satisfaction of eagerness and quality
constraints to the guard managing that task.

3.1 Overview of Fluid Execution

Our Fluid framework builds atop an object-oriented pro-
gramming model and introduces the new features described
in Table 1. We list the Fluid concepts in the left column and
their corresponding definitions in the right column.?

To see Fluid’s major concepts in action, consider a high-
level view of a program as a set of data-dependent tasks
which consist of some serial invocation of methods according

ZNote that, while the way we envision and implement the Fluid execution
blends very well with object-oriented computing, we believe the Fluid data
concept can be exploited in other programming paradigms as well.

254

PLDI ’21, June 20-25, 2021, Virtual, Canada

to the program logic. Figure 1(d) shows such a breakdown, ex-
panding an inter-region sequence, showing an approximate
(Fluid) region sandwiched between two precise, sequential
task regions. While each rectangular region contains some
fixed ordering of task invocations, each Fluid region con-
sists of multiple schedulable Fluid tasks and their associated
static dataflow graph. The nodes of this graph correspond
to tasks (dynamic instances of methods) and an edge from
node A to node B captures the dataflow between them. A
valve function is associated with the Fluid Data between two
tasks to determine whether this data is ready for consuming.
Note that, unlike in the precise program, the valve function
may return true even the data is not (yet) fully produced. A
task in the Fluid region can start its execution as soon as all
of the valves that control its input data are satisfied. Each
leaf task in a Fluid region has end valves that collectively
constitute its associated quality function. Eagerly computed
data cannot leave a Fluid region until satisfying the quality
function. It is interesting to note that setting all valves to
require the completion of antecedents within the dataflow
graph will result in a "precise execution” of the entire task
graph. Since multiple valves (attached to different edges) can
be satisfied independently (and in parallel), multiple tasks
can execute concurrently in a Fluid region, resulting in what
we call “Fluid Concurrency” (more on this later).

Consider the example shown in Figure 1(d). Execution
starts with a Non-Fluid region and generates data In. In is
sent to a Fluid region as the input. Within the Fluid region,
task1 receives In as the input and generates A and B. At some
point, task2 and task3 take their inputs and generate C and
D, respectively. Note that task2 and task3 may start their
executions before taskl has finished. Also, task2 and task3
can be started at different times and run in parallel. Later,
task4 takes C as the input and generates E. Finally, when the
valve functions are satisfied, task5 takes D and E as input
and generates Out. If Out meets the end quality check, this
Fluid region has finished and the next region starts.

3.2 Fluid Concurrency

Our proposed Fluid programming paradigm enables a new
type of concurrency, called Fluid Concurrency, which comes
in two flavors: Intra-Region Concurrency and Inter-Region
Concurrency. In the former one, the different tasks in a Fluid
region can be executed concurrently if the corresponding
valves evaluate to true. Note, however, that valve satisfaction
only implies the corresponding task becomes schedulable -
exactly when it starts its execution depends on resource
availability as well as the underlying scheduling strategy
employed (Section 6 discusses our runtime system).

The initial data that triggers the execution of a region is
non-Fluid, and the output data resulting from the execution
of a region is also non-Fluid. As such, fluidity (that is, Fluid
Concurrency) is confined within the boundaries of a Fluid
region. Consequently, even an otherwise sequential (single

PLDI 21, June 20-25, 2021, Virtual, Canada

threaded) program can take advantage of the Fluid concur-
rency offered by our programming paradigm. While a Fluid
region has only one input, it can have multiple outputs, each
driving a Fluid or non-Fluid region. As a result, multiple Fluid
regions can execute concurrently, as depicted in Figure 1(b),
leading to inter-region concurrency.

In comparison, in a conventional multi-threaded/parallel
programming, execution is governed by/constrained by strict
data synchronizations between parallel computations, which
limits potential parallelism due to the full-accuracy require-
ment. In Fluid, on the other hand, we can exploit concurrency
between fluid tasks by the approximation of data (which is
controlled by valves). We want to emphasize that, it is also
possible for a program to take advantage of both conven-
tional parallelism and Fluid parallelism, e.g., each individual
thread of a multi-threaded program can employ intra- and
inter-region Fluid concurrency. In our experiments presented
later, we also evaluate such parallel application programs.

3.3 Discussion

e Why do we need a new approximation framework?
Currently, the task of coding new approximate versions of al-
gorithms is both labor intensive and not particularly portable.
Rather than requiring a programmer to develop an entirely
new approximate algorithm to replace a precise one, Fluid
allows programmers to use high level, portable language con-
structs to encode approximation into sequence relationships
among well-defined, existing tasks. While this can be done
manually, without language support (akin to how one can
write an object-oriented program in a non-object-oriented
language), doing so for every approximation transformation
would be prohibitive. Moreover, Fluid’s approximation knobs
can easily compose with existing approximate codes.

e Why build Fluid into an OOP paradigm? There are
two key reasons that we have implemented Fluid as an ex-
tension to an OOP language. First, it is important that there
be a means of isolating approximable Fluid data, as it goes
through its intermediate, non-final states, from being ac-
cessed by any functions that were not explicitly written to
operate on such Fluid data. The data encapsulation aspect of
OOP is a sufficient and convenient means of providing this
functionality. Second, the functions that operate on Fluid
data are not invoked in a procedural fashion, but rather be-
gin their execution based on properties of the associated
(approximable) Fluid data. This naturally leads to a data-first
organization of data and execution, many aspects of which
are easily captured by existing OOP paradigms.

e What types of approximation scenarios synergize
with Fluid? Fluid approximation is applicable whenever
there is a producer-consumer relationship with the follow-
ing property: The intermediate state of the producer can be
interpreted to generate a “meaningful value” with the same
type as the eventual producer output. This can be as simple,
for example, as using the currently observed minimum in

255

H. Jiang, H. Zhang, X. Tang, V. Govindaraj, J. Sampson, M. T. Kandemir, and D. Zhang

a min() function as the current state of the producer and
exposing it, or as complex as exporting a snapshot of the
state of all mesh elements in an iterative relaxation problem.
In general, many optimization problems are fundamentally
iterative, and therefore can conceivably be fluidized.

e How do we expect programmers to use this frame-
work? The user needs to make three key decisions: i) What
type of valve will control a Fluid dependency, ii) what thresh-
old/condition setting will be used for that valve, and iii) what
quality metric, if any, will be used to determine whether the
consumers eagerly met expectations for output quality. Our
framework allows these decisions to be made and applied in
a disciplined and explicable fashion. It provides a set of stan-
dard valves to cover common scenarios and allows the user
to easily produce, if desired, "application-specific" valves and
quality functions to match the needs of their algorithms and
inputs. Section 4 provides a concrete example of how an
application programmer will fluidize an existing application.
We also want to mention that, in general, only a small set
of annotations need to be added to the program to achieve
desired approximation-performance tradeoff.

More broadly, when programmers fluidize a program, they
will have to consider how to integrate Fluid parallelism with
existing environments and platforms. Specifically, we expect
that most programmers will use Fluid in conjunction with
standard libraries that may not have been designed for Fluid
execution. If the library calls within the program are used
in an iterative fashion to produce an output that progresses
through a sequence of internally consistent states, then, even
if the library call may not be trivially fluidized internally, then
a fluid region can still be constructed around the sequence of
calls. However, in some cases, large portions of the work in
a program may be occurring within individual library calls.
For example, a CNN developer may rely on the BLAS [10]
library’s SGEMM function. In the near term, we would expect
developers interested in aggressive performance tuning to
implement a Fluid version of the SGEMM function with valve,
count and quality function support. Our vision, however, is
for the collective work of such developers to lead to extended
libraries that support both Fluid and non-Fluid versions of
heavyweight functions suitable for fluidization.

e Limitations of the current implementation. Firstly,
Fluid only focuses on true dependencies as they are the pri-
mary mechanism through which data are transferred across
tasks/functions. Multiple tasks defining the same (storage-
associated) output will need to use Fluid’s sync function to
preserve anti-dependency ordering. Secondly, Fluid is based
on an OOP paradigm. As such, “class” is the central concept
in our model. An advantage of using classes is that they en-
capsulate the Fluid data and the Fluid methods that operate
on them. We want to emphasize, however, that our approach
to concurrency (Fluid concurrency) is entirely different from
existing concurrent OOP paradigms (e.g., Actor based pro-
gramming [2]), where objects themselves are the primary

Fluid: A Framework for Approximate Concurrency via Controlled Dependency Relaxation

PLDI ’21, June 20-25, 2021, Virtual, Canada

Table 1. Major concepts in the Fluid programming paradigm.

l Concept [Definition
Fluid Valve A condition function which returns true or false. It can be used to control the start and end of a task.
Fluid Guard A processing entity that manages the execution sate of a Fluid task based on its valves or data dependence.
Fluid Member | A Fluid method or Fluid data.
Fluid Class A type of class with Fluid members that encapsulates both the data and code subject to approximation.
Fluid Object An instance of a Fluid class.
Fluid Method | A function defined in a Fluid class. Fluid methods may call non-Fluid methods, but the reverse is restricted.
Fluid Data A data structure declared as Fluid. It can only be accessed by Fluid methods while in a non-final state.
Fluid Task A dynamic instance of a Fluid method. Its execution is managed by a guard. It can be triggered by other tasks.
Fluid Region Each Fluid object defines a Fluid region which is represented as a graph where each vertex corresponds to a Fluid task, and each edge
is labeled by a Fluid data. Only leaf tasks can have end valves. Each Fluid object has a scheduler. Each Fluid task has a state machine.

concurrency primitives. In contrast, in our approach, objects
are not executed in parallel; however, different tasks within
an object (in the case of intra-region parallelism) as well as
tasks that belong to different objects (in the case of inter-
region parallelism) are executed concurrently. Thirdly, in our
model, only the leaf nodes in a region tree have associated
end valve functions, and the intermediate nodes do not. This
is mainly because allowing intermediate nodes also to have
end valve functions would make the determination of the
termination of the intermediate nodes quite difficult. More
specifically, the termination condition for intermediate nodes
depends only on topology information (e.g., all of its chil-
dren have completed). Fourthly, a region can have only one
input but multiple outputs. Further, the input and all outputs
should be non-Fluid. This is because, as discussed earlier, we
wanted a region to be a self-contained entity, which can be
plugged into any suitable place in a given program code or
used as a modular kernel replacement in a larger workload.
However, one can also imagine scenarios where a region
would prefer Fluid data as input. We believe that, in most of
such cases, the two regions involved can be combined into
one region. Fifthly, the Fluid framework only supports 1-D
arrays as Fluid data. However, the users can index the array
by themselves, e.g., they can specify a 2-D N by M array by
specifying a 1-D array with a size of NXM. Lastly, a Fluid
program will suffer from a high overhead if the application
contains many tasks since each task will create a new thread.
Also, if the number of tasks is more than the number of the
cores of the machine, Fluid will probably not achieve good
speedup. Using a thread-pool will clearly mitigate these over-
heads, but that feature is not yet supported in the current
version of Fluid.

4 Program Language Support

In this section, we describe the syntax and semantics of the
proposed pragma-based Fluid extensions to C++, and provide
a concrete example of fluidizing a real piece of code.

FluidStmt :: FluidDef | PragmaStmt
FluidDef :: __Fluid__ class
PragmaStmt :: DataPra | ValvePra | CountPra | TaskPra
DataPra :: #pragma data {data_type d; } | #pragma data {data_type * d; }
CountPra :: #pragma count {data_type ct; }
ValvePra :: #pragma valve {data_type v (para...); }
TaskPra :: #pragma task <<< task_name, SV , EV , Inputs, Outputs >>> func ()

Figure 2. Syntax of the Fluid Language.

__Fluid_ class EdgeDetection{
public:

#pragma data {image *d1;}

#pragma data {image *d2;}

#pragma data {image *d3;}

#pragma count {int ct;}

#tpragma valve {ValveCT v1;}

#tpragma valve {ValveCT v2;}

void Gaussian(image *input_img, Image *output_img, count ct);
10 | void Sobel(image *input_img, Image *output_img);
11 | void Region();
12 Image *input_img, *img_after_Gaussian, *output_img; };
13 | void EdgeDetection::Region () {

R T STV

©

14 | di->initfinput_img);

15 d2->init(img_after_gaussian);
16 d3->init(output_img);

17 | ctinit(o);

18 | #pragma task <<<t1, {}, {}, {d1), {d2}>>>Gaussian(input_img, img_after_gaussian, ct);

19 | vLinitct, 0.4%input_img->size);

20 | v2.init(ct, input_img->size);

21 | #pragma task <<<t2, {v1}, {v2}, {t1}, {d2), {d3}>>>Sobel(img_after_gaussian, output_img);
2| syncft2); ¥;

23 | void main() {

2 ion *S1 = new ion, *52 = new

25 | S1->Region();
26 | s2->Region();
27 sync(); }

Figure 3. Programmer-level code using Fluid pragmas.

4.1 Syntax and Semantics

Figure 2 describes the syntax of the Fluid language exten-
sions. For a given statement in an application source code,
the programmer can employ fluidity through explicit use of
FluidDef and PragmaStmt.

FluidDef: The __Fluid__ keyword in a class declaration
declares it to be a Fluid class. A Fluid class must satisfy the fol-
lowing properties: i) it must contain a public Region() method;
ii) it must contain at least one Fluid data member and one
Fluid method. Invoking Region() will, among other initial-
ization functions, construct a Fluid Task Tree based on static
data dependencies among the class’s Fluid method functions
(also referred to as “tasks”). Fluid data will be shared between
a parent and a child. Only Fluid methods can take Fluid data
as parameters; iii) there should be only one root task for the
task tree, and there should at least one leaf task; and iv) a
task can only be scheduled in the Region() function; other
non-Fluid methods cannot invoke a Fluid method. However,
a Fluid method can invoke a non-Fluid method.

PLDI 21, June 20-25, 2021, Virtual, Canada

PragmaStmt: We use #pragma data, #pragma count, and
#pragma valve to annotate predefined types, and we use
#pragma task to schedule a task in our Fluid framework.

The data pragma declares a Fluid data member that will
be shared between two Fluid tasks, whose value may be
used to trigger the execution of dependent Fluid tasks. There
are two different ways to make the declaration. If the Fluid
data is a variable, (e.g., an integer x), we can indicate that
x is a Fluid data directly by using “#pragma data {int x};”.
Second, we can also indicate that an array is a Fluid object.
Take an integer array “int * A”, as an example. We declare a
Fluid data by “#pragma data {int *d};”, and then initialize
d by “d « init(A)”, meaning that d is a Fluid data, and the
value of d corresponds to the values of the elements in A.

The count pragma provides introspection on the state
of Fluid data by counting related events or tracking key
statistics. For example, it can be used to monitor the number
of updates performed on a Fluid data in a Fluid task, and it can
also be used to record the average value of an array of Fluid
data. Specifically, a counter ct is declared as a predefined
type __count__<T>. The template type T can be any generic
type offered in C++. For example, we can declare an integer
count ct by “#pragma count {int ct};”. We can use ct to
monitor the number of updates to Fluid data x by invoking
“ct++;” after each update of x.

The valve pragma includes the declaration of a valve,
which is a predefined class in our framework. It will check
whether a Fluid data is satisfied and returns either true or
false at any given time. For example, a count valve (valveCT)
accepts two parameters: a count ct, and a threshold ¢. x mon-
itors the number of updates to a Fluid data d. The check
function, on the other hand, keeps comparing the value of
x with a programmer-defined “threshold” ¢, and the count
valve is said to be satisfied when x > t, which means that
the Fluid data d has been updated more than ¢ times.

The task pragma is used to invoke a Fluid task. A task
is a proxy of a member function in the Fluid class, and it
consists of two parts: a guard (<<< >>>) and a function
(func()). The guard has five fields. The first field (task_name)
names the task. The second field (SV) indicates the start valve
set. The semantics is that func() cannot start its execution
until all its valves are satisfied. The third field, EV, is a set
of valves for the end condition of this task — collectively,
these valves implement an output quality function. Recall
from the discussion in Section 3.3 that only a leaf task in a
Fluid region can contain a non-empty set of end valves. A
task is considered as having produced an output of sufficient
quality only when all end valves are satisfied. Satisfaction
of this quality property is used in re-execution decisions
and task/region-level descheduling operations performed
by the runtime system described in detail in Section 6. The
fourth (Inputs) and fifth (Outputs) fields are two sets of Fluid
data, which refer to the inputs and outputs of this task. Note
that the input and output data for each task determine the

257

H. Jiang, H. Zhang, X. Tang, V. Govindaraj, J. Sampson, M. T. Kandemir, and D. Zhang

topology of a Fluid region. For example, if a Fluid data d is
listed in the Outputs field of a task ¢1 and the Inputs field of
task 12, we can infer that there is a data dependency between
t1 and t2. Task t1 is the parent node of task ¢2 in the task
tree of this Fluid region. The function part func() must be a
Fluid method that is a member of this Fluid class.

4.2 Synchronization APIs

We support synchronization APIs in our framework in or-
der to control the parallelism between and within the Fluid
regions. More specifically, the sync(...) APl is used to imple-
ment a barrier synchronization and guarantee that a specified
set of tasks are finished at a given point in execution. It can
take a single task as a parameter and blocks until the task
finishes. It can also take an instance of a Fluid class as its
parameter to wait for all the tasks in that Fluid instance to
finish. If no parameter is specified, it blocks the program
until all scheduled tasks in the program finish.

4.3 A Fluid Code Example: Edge Detection

We demonstrate the fluidization of Sobel filter-based Edge
Detection [90] as an example of how an application source
code is modified using our Fluid language extensions. In
this edge detection algorithm, we first apply a Gaussian fil-
ter on all the pixels of the image to remove the noise and
then use the Sobel filter to calculate the gradient for each
pixel to select the edges based on the gradient value. Fig-
ure 3 shows the fluidized code. There are only two tasks (¢1
and t2) in the task graph of the Fluid region. Fluid data d1,
d2 and d3 correspond, respectively, to the input image, the
internal image after Gaussian filter, and the output image.
Note that d2 is shared between t1 and t2, which indicates
that there exists a data dependence between the two tasks.
Task t1 corresponds to Gaussian(). It takes input_img (d1)
as input, applies the Gaussian filter on each and every pixel
on the image, and stores the output in img_after_gaussian
(d2). Task t2 corresponds to the Fluid method Sobel(). It
reads from img_after_gaussian (d2) and outputs its result
to output_img (d3). The count ct is used to monitor how
many updates have been performed so far on d2. The two
count valves, v1 and v2, check whether the number of up-
dates is greater than the specified thresholds. The start valve
vl indicates that ¢2 cannot start its execution until at least
40% of d2 has been updated in 1. The end valve v2 indicates
that the execution of 12 is not considered acceptable unless
all pixels of d2 have been updated before 2 finishes execut-
ing. This enforces the requirement that, if only a few pixels
are smoothed by the Gaussian filter before Sobel finishes
(e.g. Sobel raced too far ahead of Gaussian), the execution
considers the result inaccurate and ¢2 is re-executed.

4.4 Valve and Threshold Selection and Automation

Exploiting Fluid parallelism relies on identifying proxies
for the maturation of Fluid data that can be encoded as

Fluid: A Framework for Approximate Concurrency via Controlled Dependency Relaxation

class EdgeDetection{
public:
fluid::data *d1;

// #pragma data {Rgbimage *d1;}
/1 #pi *
11 #p
/1 #py
1/ #p
/1 #prag
9 | void Gaussian(image *input_img, Image *
10 void Sobel(Image *input_img, Image *output_img);

11| void Regionl();

12 | Image *input_img, *img_after_Gaussian, *output_img;
13 | fluid::TaskScheduler *ts; }
14 | void EdgeDetection::Region () {
15 | di->init(input_img);

16 | d2-init(img_after_gaussian);

fluid::ValveCT v2;

Sobel, this, img_after_Gaussian, output_img);

__t1)>({d2}, {d3}, tpb__12);

({vi}, {v2_}, tp__t2);

29 sync(t2); };

30 | Void main() {
1 i ion, 52 = new

32 | s1->Region();
33 | s2->Region();
34| syncl); }

Figure 4. Code from Figure 3 after pragma translation.

Meet start Early termination

Mest end valves/ Use complete
input / All children are completed

Figure 5. State machine for a Fluid task.

valves. Fluid directly supports iteration count and value sta-
bility proxies, but other tasks may have data-structure or
algorithm-specific metrics that better indicate whether Fluid
data is useful to consume. Correctly understanding what
the best measures of partial completion will be to trigger
each task requires either domain knowledge on the part of
the programmer or a substantial training set from which
ML techniques can be used to discover relevant features. In
general, both valves and thresholds could be inserted and con-
trolled, to some degree, by the compiler and runtime. Firstly,
the user specifies a minimum degree of execution/fulfillment
of a property by a producer of Fluid data and, therefore, any
effective threshold value between the specified value and full
serialization is valid. This means that a Fluid runtime is free
to dynamically adjust the threshold based on whether this
valve participated in a chain of tasks that failed its quality
function. We will discuss more details in section 6.1. Also,
ML-based policies could be deployed to auto-tune both the
types of valves and the thresholds. This would only be safe
to automate for task chains that end in user-specified qual-
ity functions that would act as implicit lower bounds on
the thresholds generated by the runtime. Our implemen-
tation does not have these features yet. The evaluation of
tradeoffs between runtime complexity and performance im-
provements from auto-tuning is a topic of future work.

5 Compiler Support

We implemented a source-to-source translator from scratch
that automatically maps a pragma-based fluidized application

258

PLDI ’21, June 20-25, 2021, Virtual, Canada

code into an equivalent C++ code. Since our task scheduler
always works with a valid topological sort of data dependen-
cies, the fluidized code will be correctly compiled even if all
pragmas are ignored — but in that case it will not make any
use of approximate concurrency. Note also that a fluidized
program compiled by the Fluid framework can specify the
task scheduling declarations in any order and would still
execute correctly. To show how our translator works in prac-
tice, we focus on the edge detection code from Figure 3. Our
compiler automatically translates this user-written code to
the equivalent C++ code shown in Figure 4.

Firstly, in the declaration of a Fluid class, the pragmas are
unwrapped, and each type is translated to our pre-defined
data type (lines 3 to 8). We add a “TaskScheduler” ¢s at the end
of the declaration, which will be utilized in future scheduling
of the tasks. ts also provides internal interfaces for binding
Fluid methods and Fluid data into schedulable task-execution
functions, and for generating task objects that couple the
guard and task-execution functions together.

Secondly, our compiler translates the task scheduling state-
ments. For example, task t1 is translated to the code encap-
sulated between lines 20 and 22. The first statement (line 20)
binds the Fluid method function with its parameters. The
second statement (line 21) generates a new task-execution
function, with internal task-scheduler interface, and asso-
ciates it with the Fluid data members specified in its input
and output sets. The third statement (line 22) uses an inter-
nal function newTask () to construct a new, schedulable task
entity, visible to the task scheduler, by coupling the guard
thread and the task-execution function together. If the task
contains start or end valves (e.g., t2), we make a new instance
of the valves before we construct the task. That is, in lines 24
and 25, we create two new instances of ValveCT (v1 and v2)
with the parameters of the valve. The valve will be passed
to the task in line 28 by setting the parameters of its guard.

Thirdly, since some of the tasks take count as a parameter,
we slightly change the variable type for the count. When we
pass the count to a method, we also pass the address of the
memory where we store the count value. We use “ct.ct()” to
obtain the address of the memory where we store the value.
Also, for each Fluid method that takes count as a parameter,
we change the type from count to the corresponding type
of pointer. For example, since ct is a count variable with the
type of “int”, we change its type to “int*” in line 9.

6 Runtime Support

To support the Fluid, our runtime system includes three inter-
related components: guard thread, Fluid states, and Fluid state
machine. Each task passes through specific states during its
execution, as specified by the Fluid state machine. The execu-
tion of each task is controlled by its own guard thread. The
guard thread is launched upon the initiation of a Fluid task
and is terminated when the Fluid task finishes its execution.

PLDI 21, June 20-25, 2021, Virtual, Canada

6.1 State Machine for Fluid Tasks

As shown in Figure 5, a Fluid task is always in one of seven
states: (I) initialization, (CS) start checking, (R) running,
(CE) end checking, (C) completion, (W) waiting, and (D)
dependence-stalled (waiting for antecedent tasks to update
task inputs before re-executing). A Fluid task is initialized
in I when the execution flow reaches its constructor within
a Region() call. A separate guard thread is created by our
framework to provide the guard functionality for each new
task. This guard thread continuously checks the start valves
before the task can start its execution. Once all valves are
satisfied, the task is eligible to run (R). When a Fluid task
finishes its execution, it will be in the CE state where end
conditions are checked. The transition from CE to C can
be triggered by any of the following three conditions: i) a
non-empty set of end valves all return true (i.e., this task is
a leaf node and the output satisfies all quality measure); ii)
all inputs to this task were, prior to the start of the execu-
tion, computed with non-Fluid values (which means that the
output of this task is already identical to that which would
have been produced in a precise execution); or iii) all the
descendant Fluid tasks of this task in the task graph are in
the completion state. If none of these three conditions are
satisfied, the Fluid task transitions to W, waiting for further
signals and preparing for potential re-execution. During the
stay in the W state, three state transitions can potentially
take place, depending on the signal received. First, a transi-
tion to the C state (1)) can be triggered by the completion
signals received from the descendant tasks, indicating that
all the descendant tasks are in the completion state and there
is no need to re-execute this task. Second, the task will tran-
sition to the running state (2)) when it receives an input
data update signal from its parent tasks. Since the parent
tasks have generated more accurate input data, the task will
use the updated data to re-execute and itself generate new
outputs. It might happen that the task starts its re-execution
and then all of its descendant tasks send completion signals.
To address such cases, we also implemented an early termina-
tion mechanism to stop the task’s execution and relinquish
the occupied resources for other waiting tasks. Third, the
task will transition to the D state ((3)) if it receives a request
signal from any of its child tasks. This is because, when
the request signal is received, the task needs to re-execute
to generate more accurate results for its descendant tasks.
However, the task should not start its re-execution until a
more accurate input data is produced by its parent tasks.
Therefore, it enters the D state to wait for its parents to send
signals indicating that a more accurate data has actually been
generated. Upon receiving this signal, it transitions to the R
state for re-execution ((4)). In the current implementation,
the Fluid data are shared between producer and consumer
tasks within the same memory locations.

259

H. Jiang, H. Zhang, X. Tang, V. Govindaraj, J. Sampson, M. T. Kandemir, and D. Zhang

We want to emphasize that our task re-execution mecha-
nism helps users automatically adjust/modulate valve thresh-
olds. Specifically, the programmer specifies the minimum
thresholds. Our runtime would then dynamically adjust the
threshold between the programmer-specified threshold and
full serialization, since increasing the threshold increases the
accuracy of the output. More specifically, we re-execute the
consumer with more precise input data if it fails the quality
check. For example, consider a dependency-chain (A1->A2-
>A3). If A3 fails the quality check, it re-executes with more
precise data from A2 (since A2 keeps executing while A3
executes). Similarly, if A3’s quality check fails even when ex-
ecuting after A2 finishes, A2 re-executes with a more precise
version of input from A1. All tasks keep getting triggered un-
til the final task meets the quality-check, although a task will
not re-execute if its input is the result of fully serialized an-
cestor tasks. For example, after A1 finishes its execution, this
means it has generated complete/precise data (as it would
generate in a non-Fluid execution), and never re-executes.
If A2 uses that complete data for one round of re-execution,
after this round finishes, A2 has also generated its complete
(most accurate) data. In the worst-case, all tasks run with
complete/precise data and finally generate precise output,
which would be identical to the output of the corresponding
non-Fluid program, and the quality check is overridden.

6.2 Fluid Region Scheduling

Recall from the discussion in Section 3 that both the input
and output of a Fluid region are non-Fluid data. Therefore,
we adopt a first-come-first-serve policy to schedule the re-
gions. Specifically, a Fluid region starts its execution when i)
its input data are ready, and ii) there are available execution
resources. One may envision more sophisticated scheduling
mechanisms for multiple regions based on the region char-
acteristics, such as shortest-job-first scheduling [72], or data
locality concerns. However, we found that FCFS performs
well enough for our tested applications, and postpone the
exploration of more sophisticated scheduling strategies to
future work.

7 Evaluation

We evaluate our proposed Fluid framework using eight ap-
plications (or computational kernels). We want to emphasize
that our goal in this section is not to defend a particular
fluidization strategy for a given benchmark, and we do not
claim that the particular approach used in each benchmark to
fluidize it is the best one.® Instead, our goal is to demonstrate
that Fluid computation can be used to encode various approx-
imate computing opportunities across different applications,
and that doing so can lead to reductions in execution times

3We postpone automatic fluidization of non-Fluid applications to a future
study. The application programs in this work have been hand-fluidized.

Fluid: A Framework for Approximate Concurrency via Controlled Dependency Relaxation

PLDI ’21, June 20-25, 2021, Virtual, Canada

Table 2. Characteristics of our fluidized workloads.

Application Producer Consumer

How to fluidize

tot/pragma (app) | tot/pragma (region)

Re-calculate the
cluster centers

Assign Cluster

K-means [90] for each pixel

Start calculating the center before
all pixels are assigned a cluster

489 /12/2.5% 146 / 11/ 7.5%

Bellman-ford (BF) [78] One relax iteration Next relax iteration

Start next relax iteration before relax all vertices

188/13/7.0% 85/13/15.0%

Color the
vertices

Find local

Graph Coloring (GC) [82] maximum vertex

Coloring selected nodes before
find out all local maximum vertices

307 /8/2.6% 118/7/59%

Edge Detection (ED) [90] Noise removal filter | Edge detection

Start detecting edges with noisy images

245/9/3.7% 128 /8/6.2%

MedusaDock (MD) [39, 93] energy poses

energy of poses

FFT [90] Sin/Cos value Calculate FFT Calculate FFT with approximate sin/cos values 459 /17 /3.7% 180/ 16/ 8.9%

DCT [90] Cos value calculate sum Calculate sum with approximate cos values 325/14/4.3% 246 /13 /5.3%

Neural Network (NN) [52, 79] | Previous layer Next layer Start next layer before all feature calculated 427 /17 / 4.0% 263/16/6.1%
Calculate Docking Select lowest Start selecting poses when the a portion of

the poses are processed

200/9/4.5% 148 /8/5.4%

OlLatency ® Accuracy

nl

Figure 6. Fluidized accuracy and latency, normalized to orig-
inal version.

Normalized
Performance

—
:I_

m FFT 128

B

Hela —
MSC —
U373 —
Eagle mt—
OV | —
Human .
—
LeNet m—
,

5K_2M
1K_200K

T FFT 512 —
21 protein e—

o

100 protein e —
Iy —

s}

kernel16 m—

5K_200K
1K_800K

Z VGGNet

ED

z

K-means

[}
a
@
B

without much loss in accuracy. Further, we do not exhaus-
tively tune the parameters associated with each valve — the
parameters are selected illustratively rather than optimally.

7.1 Applications and Methodology

Applications: We use a 20-core Intel Xeon-based platform
with 32GB memory in our experiments. We evaluate Fluid
on eight applications from different areas considering both
intra-kernel and inter-kernel level fluidization. Table 2 lists
the important characteristics of the applications used in this
study. For each application, we show the corresponding pro-
ducer/consumer tasks and how we fluidize the application.
We also list the number of pragmas in the Fluid version of the
code and its ratio to the entire program lines. At a high level,
we can divide our applications into 4 classes, based on the
type of the task graphs they possess. As shown in Figure 1(a),
the first class of applications only has two tasks in a single
Fluid region, where the first task is the producer and the sec-
ond one is the consumer. This class includes i) edge detection
where we first remove the noise on the image and then catch
the edges on the image, and ii) MedusaDock [93], which first
calculates energy for each docking pose (in the context of
drug discovery) and then selects several lowest energy poses.
The second class of applications contains multiple Fluid re-
gions, each containing a producer task and a consumer task.
This class includes K-means and Graph coloring, both it-
erating over invocations of a producer-consumer pair. The
third class includes Neural Network (NN) and Bellman-Ford
which contain multi-task chains within a single Fluid region
— within the Fluid region, all but the first and last tasks in
the chain are both an eagerly invocable consumer and a pro-
ducer of data for another dependent task. For the last class
of applications, the task dependency graph features either
or both of multi-consumer (two or more child tasks with

260

independent start conditions on the same data structure) and
multi-producer (a task dependent on multiple valves, each
relating to updates to a different data structure) topologies.
This class includes FFT and DCT where we calculate the
value of cos/sin functions. K-means, Edge detection, FFT and
DCT are implemented based on Axbench [90]. The graph col-
oring is based on Big-graph with the implementation in [82].
We used our own implementations for Bellman-ford and NN,
and used the implementation of MedusaDock from [39].
Inputs: K-means uses three input images with different
pixel diversities. For Bellman-Ford and graph coloring, we
generate input graphs with different sizes and densities to
study the input sensitivity of our framework. For edge detec-
tion, we choose three EM images from a publicly-available
dataset [56]. For FFT and DCT on the other hand, we gen-
erate input vectors/tensors with different sizes. For NN, we
use Mnist [52] for LeNet [52] and ImageNet [45] for VG-
GNet [79] as the testing data with different networks, and
we use pdbbind [89] to evaluate MedusaDock.

Error Metrics: For K-means, we compute the squared Eu-
clidean distance to the cluster centroid for each pixel and
sum those distances together. For Bellman-Ford, we first
normalize the path length for each destination vertex to
the actual shortest path, and then compute the average er-
ror. For graph coloring, the error metric we employ is the
graph’s spectral number, normalized to the spectral number
produced by the original (already approximate) algorithm.
For edge detection, we use PSNR (Peak Signal to Noise Ratio)
as our error metric. Additionally, we use normalized MSE
(Mean Squared Error) of the output as the error metric for
FFT and DCT. Finally, We use prediction accuracy as the
error metric for NN and MedusaDock. When comparing the
fluidized version of an application to the baseline, we calcu-
late the normalized accuracy as: ABS(fluid_ErrorMetric —
baseline_ErrorMetric)/baseline_ErrorMetric

7.2 Fluid Execution Time and Accuracy

Figure 6 plots the normalized latency and accuracy results
for all applications. Here, the start condition of the consumer
task uses the percentage valve, which means that the de-
pendent tasks start their executions when a certain fraction

PLDI 21, June 20-25, 2021, Virtual, Canada

H. Jiang, H. Zhang, X. Tang, V. Govindaraj, J. Sampson, M. T. Kandemir, and D. Zhang

Table 3. Runtime statistics.

[APP [TASK [Average number access to the state [Average time stay in the state / us]
InimldrlCheckRunninglEndCheckWait/StallCompIete Init StartCheck| Running [EndCheck| Wait/Stall Complete|
Edge Detection Gaussian 1 1 1 1 0 1 8 55 393146 81 0 23
Sobel 1 1 2 2 1 1 6 299329 83743 32 10502 41
Bellmanford Relax 1 1 4.62 4.62 4.5 1 26.19 6377668.54 |1126602.08 84.07 19702.16 75.12
K-means |AssignCluster| 1 1 1 1 0 1 3.15 116.46 76414.33 147.41 0 63.41
Recenter 1 1 1 1 1] 1 3.23| 25945.36 25945.36 33.73 0 24.26
Graph Color Se]e(ft 1 1 1 1 0 1 3.73 113.24 22600.75 58.07 0 31.59
Coloring 1 1 1.14 1.14 1.01 1 3.87| 11404.89 146 121.39 11119.27 57.91
FET FFTsin 1 1 1 1 0 1 14.5 866.75 1388.25 210 0 135.2
FFTcos 1 1 1 1 0 1 6.75| 2102.75 1122.25 244 0 162.5
DCT cos 1 1 1 1 0 1 1.70 67.81 157.07 104.75 0 60.48
sum 1 1 1 1 0 1 1.89 122.77 160.45 64.13 0 39.80
layer1 1 1 1 0 0 1 31 77 66384002 0 0 211
NN layer2 1 1 1 1 1 1 7 64845464 32214 44 1506357 30
layer3 1 1 1 1 1 1 426 | 64877226 1500895 80 5130 95
layer4 1 1 1 1 0 1 3 66377938 5165 40 0 154
Medusa medusa_dock| 1 1 1 1 0 1 5.46 74.97 11122276.46| 71.47 0 53.76
select pose | 1 1 1 1.51 0.51 1 7.27| 2283527.73 228.03 40.15 [17563000.20, 45.33

of the payload of the producer task has completed. We ob-
serve that the fluidized version of Bellman-Ford matches
the precise output: Since, for non-pathological graphs, each
vertex tends to only update its neighbors very few times [27],
skipping some of the execution does not affect the final re-
sult in any significant way. Fluidized K-means also exhibits
accuracy similar to that of precise execution: In K-means,
it is known that most pixels are unlikely to change their
cluster membership after the first few iterations [46]. Note
that the benefit of Fluid for K-means comes from overlap-
ping the execution of the producer (assign cluster) and the
consumer (re-calculate centroid) tasks, not from reducing
the number of epochs. For graph applications (Bellman-Ford
and Graph Coloring), we observe that the Fluid framework
achieves better speedups on dense graphs (5K_2M/1K_800k)
than on sparse (5K_200K/1K_200K), as dense graphs require
more computation (in the original, non-Fluid version) and,
consequently, the fluidized version can skip more compu-
tations. Similarly, for FFT, DCT, and MedusaDock, larger
input sizes lead to better results than smaller input sizes as
the payload for large input vectors is comparatively greater
than for a small input vector. For NN, LeNet achieves better
performance than VGGNet since approximation on small
datasets/networks has less impact on accuracy. On average,
Fluid brings 22.2% execution time improvements.

7.3 Overhead and Sensitivity Profiling

To provide deeper insights into fluidized execution, we ex-
plore the sensitivity to valve parameters, valve type and
producer/consumer task workload, and characterize the over-
heads for Fluid tasks. We evaluate three of our applications
and sweep the start valve threshold to observe the changing
latency-accuracy tradeoffs. After that, we evaluate the two
different valve types on two of our applications to study the
performance with different types of valves. Additionally, for
one of the applications, we change the algorithms used in

261

the producer and consumer tasks to show that our frame-
work works on diverse workload chains. Finally, we provide
statistics revealing, for each task of each application, how fre-
quently each runtime state is visited during Fluid execution
and how much time is spent in each state. We also summa-
rize the total overheads during the transitions between the
different states of the state machine for each application.
Valve threshold: Figure 7 shows the results for sensitivity
study on changing the start valve thresholds. One can make
the following observations from these results. First, as the
threshold value decreases, the execution time reduces for all
applications, and the accuracy drops for two applications
(GC and NN). For K-means, the accuracy is not sensitive to
the threshold. Second, with larger inputs, the performance
gains are more sensitive to the threshold modulation (e.g.,
5K_2M for GC and Mnist10000 for NN). This is because
the workload in each task when using the large input is
heavier than that when using the small input, and therefore,
task execution time is more significant compared to the task
launch overhead. Third, for all applications, the programmer
may find several operation points with a significant speedup
boost without much accuracy drop.

Valve type: Figure 8 shows the performance of MedusaDock
and K-means with two different valve types (percentage and
convergence valves). For both applications, the percentage
valve returns true when a certain fraction of the producer
task is complete. For MedusaDock, the convergence valve
returns true when the producer cannot find a lower energy
pose during certain iterations. For K-means, we run both
the original and Fluid versions with the same number of
epochs. For the baseline evaluation, we train K-means until
convergence. For the Fluid version, we run the same number
of epochs and observe the accuracy drop. The convergence
valve returns true when a certain fraction of pixels on the
image have not changed their categories during last sev-
eral iterations. From these results, one can observe that the
proposed Fluid framework can work along with different

Fluid: A Framework for Approximate Concurrency via Controlled Dependency Relaxation

PLDI ’21, June 20-25, 2021, Virtual, Canada

g
e
5 1
El
s
T o
a6

0900 mm
oRbhaoRrNE

‘ﬁTﬂiTm 1l

TRy
§53883¢2 £5838%
28R8%¢8 Z888%

ONRBBRNARON

aaaaaaa
wwwwwww

8
Threshold
mmmLatency ~O-Accuracy

Normalized Performance

Normal

(a) Result for Graph Coloring.

mmLatency ——Accuracy

(b) Result for K-means image.

012
g1
I
II 506
I”l”” il 7 0 5ee IIII
o2 I
Al ALHHHHATHHH 1 |
2R X R R 2R R 2R ERE R N EEEE8E8888 EEEEE8888
EEEEEEE 88 EEEEEEEs SRRSREREBRESCRRBEABRER
s
Eagle & _ owl Human § Mnist100 8 Mnist10000
Threshold 2 Threshold

. Latency <-Accuracy

(c) Result for NN.

Figure 7. Latency and accuracy performance with different thresholds for the valve.

12

1
0.8
0.6
0.4
0.2

0

N
§
N
N

Human

LA

owl
-means
m Percentage valve accuracy
S Converge valve accuracy

1protein 100 protein Eagle
MedusaDock K
OPercentage valve latency
DO Converge valve latency

Normalized performance
Normalized Performance

i

Latency Accuracy Latency Accuracy Latency Accuracy

U373 MSC Hela §
@ Gaussian-Sobel (0 Gaussian-Laplacian B Mean-Sobel [Mean-Laplacian

e

\
\

-
oNBRO @R N

L

latency
Batch1000 Batch5000
SLeNet OLeNet+Fluid B o Fluid

Normalized Performance

Figure 8. Percentage valve and con-Figure 9. Different producer and con-

verge valve performance for Medu-sumer workload for Edge Detection.
saDock and K-means. All results nor-Results normalized to non-Fluid ver-
sion of each workload chain.

malized to non-Fluid version.

> 0 100%Fluid W Baseline|

o115

<

21

©

=05

g o

S S¥ReIsEzEEsyssssss

s 3 - g $5%8

E *258° 5 YRS B85 5 ¢

H T ¥k EEaasl s

s e £ aa2g
ED K-means GC BF FFT NNS MDS DCT

Figure 11. Overhead of the Fluid framework.

types of valves based on the application. For example, Medu-
saDock prefers the convergence valve since the lowest pose
energy will be converged at an early stage for many proteins,
whereas K-means is more compatible with the percentage
valve because it will take more time for stability checking.
Different workload chains: Recall from Table 2 that the
producer task filters noise from the image while the con-
sumer task detects edges on the de-noised image with a
gradient filter. Here, we implement two noise removal fil-
ters (Gaussian and Mean) and two gradient filters (Sobel and
Laplacian) for Edge Detection. We show the results for all
four (two by two) workload possibilities in Figure 9. One
can observe that Sobel achieves higher latency benefits than
Laplacian. This is mainly because Laplacian run faster than
Sobel filter. As a result, the execution overlap between pro-
ducer and consumer (which is the latency saving) contributes
more to the overall execution time. On MSC images, the ac-
curacy of Laplacian is more sensitive to the noise filtering
since this input contains more noise than the others.
Runtime Overhead and Scheduling Statistics: To inves-
tigate the overheads involved in our framework, we set all
start valve thresholds to 100%, i.e., the producer task will
execute the same as in the non-Fluid version. The normal-
ized latency is plotted in Figure 11. The yellow bar indicates
how much the framework overhead contributes to the total
application execution time. We find that the overhead is only

262

Figure 10. Combining Fluid and other
approximation techniques (Fluid atop
Squeezenet approximation of LeNet).

significant in K-means, Graph-Coloring (GC), and Medu-
saDock (MD). In general, K-means and GC launch many
more threads than the other applications, and the thread
launching overhead is significant in those two applications.
For MedusaDock, the task performs heavy disk and mem-
ory accesses (100GB), and the memory/disk access issue
becomes more serious in the parallel execution scenario.

Table 3 presents statistics describing the task state ma-
chines (see Figure 5 in Section 6). Specifically, for each invo-
cation of the task, it shows i) the number of times the task vis-
its each state and ii) the time spent in each state. From these
results, one can make the following observations: i) Each
task accesses the Init, StartCheck and Complete states only
once, whereas the Execution, Endcheck and Wait/Depend
states are visited multiple times by some tasks due to end-
valve (quality) failures and subsequent re-execution; ii) Non-
root tasks spend long time in the StartCheck state, indicat-
ing some latency in valve checking; iii) For all but three
tasks, the re-execution overheads are small. In Bellman-Ford,
we invoke the same task multiple times, which generates
a long task chain. Some internal tasks re-execute several
times, and with high variance, due to chained re-execution
on any quality-function failure. In Edge Detection, using a
40% threshold for the start valve, we fail in the quality func-
tion check. In MedusaDock, we do not allow pose selection
to start if we only check pose energy a few times, to guaran-
tee the software invest on enough poses. However, around
51% proteins fail this check; and finally, iv) In NN, the first
layer does not finish even when the last layer has finished.
Hence, we do early termination for the first layer. The second
and third layers stall in the Wait state since the fourth layer
has not finished yet. They need to wait for notification of
whether re-execution is required or not.

PLDI 21, June 20-25, 2021, Virtual, Canada

15000 10000
8000
= 6000

4000

{-a-Baseline -o-Fluid

:3:8:» S) 2000

3 =4 0
0 2 4 6 8 10 12 14 16 18
Degree of parallelism
K-means

-&-Baseline -o-Fluid/

10000
5000

0 2 4 6 8 10 12 14 16 18
Degree of parallelism
Edge Detection

—{-a-Baseline -o-Fluid—— —— -Baseline -o-Fluid

40000
20000 k 3 é
0

0
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Degree of parallelism Degree of parallelism
Graph Coloring FFT

60000 —— 60000 —
240000

20000

Figure 12. Fluid results of multi-threading applications.

7.4 Combining Fluid with Other Approximations

The Fluid framework is general and can be applied in con-
junction with many other approximate computing strategies.
To demonstrate this and explore the marginal utility of Fluid
for already approximate codes, we use Lenet [52] as an ex-
ample application and Mnist as input dataset, with different
batch sizes. As shown in Figure 10, we first fluidize Lenet and
achieve about 28% execution time saving. Next, we consider
Squeezenet [36], which can be considered an approximate
version of Lenet (Squeezenet is actually an approach for accel-
erating 3 by 3 convolution kernels). Squeezenet achieves 72%
latency reduction over Lenet. Finally, we fluidize Squeezenet
and achieve around 82% execution time saving without much
accuracy drop. This small exercise clearly shows that our
Fluid framework can be used on original (fully accurate)
applications as well as on their approximate counterparts.

7.5 Fluidizing Multithreaded Codes

We evaluate Fluid on four applications (K-means, Edge de-
tection, Graph Coloring and FFT). Figure 12 plots the per-
formance results. We can observe that fluidization benefits
the multithreaded K-means significantly when the degree of
parallelism is low, while the magnitude of improvement is re-
duced in higher degrees of parallelism. On the other hand, in
edge detection and graph coloring, Fluid achieves consistent
latency reductions across the different degrees of parallelism.
In K-means on the other hand, we have multiple Fluid re-
gions in the entire program, which collectively generate
many work-threads and guard-threads. As the degree of par-
allelism is increased, the workload for each thread decreases,
and the overheads brought by these work- and guard-threads
become more pronounced in the multithreaded versions.
In FFT, when the degree of parallelism becomes 16, we al-
most reach the limits of the underlying compute resource
(CPU cores). Further, our Fluid framework achieves 22.9%,
20.6%, 43.4% and 21.6% latency reductions, respectively, for K-
means, Edge Detection, Graph Coloring and FFT, when using
16 threads, which means Fluid parallelism is complementary
to the conventional parallelism based on multithreading.

8 Planned Future Work

Accommodating dynamic task-graphs. Our current im-
plementation does not handle all cases required for dynamic
task graph execution, including producer early-termination

263

H. Jiang, H. Zhang, X. Tang, V. Govindaraj, J. Sampson, M. T. Kandemir, and D. Zhang

with non-fixed consumer count. We therefore present results
limited to regions where the nodes (tasks) and edges (de-
pendencies) between the tasks in a Fluid region can be fully
specified before the task-graph starts execution. Extending
the Fluid framework to dynamically generate the task-graph
and the Fluid runtime scheduler to robustly process dynamic
condition sets during runtime is part of ongoing work.
Integrating Fluid with existing frameworks. Currently,
the user has to structure the program in a graph style which
can be compiled by Fluid. We plan to integrate our frame-
work with other existing task-graph frameworks such as
Intel TBB [43], OneAPI [37], and OpenCilk [76]. This can be
achieved by either reimplementing Fluid’s features on top of
these other frameworks, or by providing Fluid support for
existing frameworks. We believe such integration can reduce
the effort for a user to rewrite applications in a Fluid style.
Exploring other programming language paradigms.
Our current implementation employs OOP primarily to iso-
late the Fluid and Non-Fluid parts of the program, where only
Fluid objects have access to Fluid data. We believe Aspect-
Oriented Programming (AOP) paradigm is another option
using which Fluid can be implemented. Hence, we plan to
explore implementing Fluid on top of AOP as well. In such
implementation, each major Fluid concept (e.g., data, task,
valve) would typically be implemented as a module.

9 Related Work

Approximate computing: Recent works have focused on
approximate computing [8, 31-33, 51, 58, 63, 70] that target
applications for which one may accept less-than-exact out-
put. At the software level, Bornholt et al. [12] suggested an
“Uncertain” type as an abstraction for exposing uncertain
data and leveraged runtime sampling and hypothesis tests
to evaluate computation and conditionals. Carbin et al. [15]
formalized and proposed programming language support for
relaxed programming. Zhu et al. [95] investigated a novel
computation model for accuracy-aware transformations, and
proposed a randomized optimization algorithm to approxi-
mate such computation model. StreamApprox [67] executes
a given program with a sampled subset of input stream data
based on the resource budget. Sampson et al. [74] proposed
probabilistic assertions using which the programmer can
express probabilistic correctness properties. At the architec-
ture level, Venkataramani et al. [87] investigated a vector
processor architecture, QUORA, that balances energy con-
sumption and result quality. Esmaeilzadeh et al. [26] studied
an architecture that augments a traditional processor with
a neural processing unit (NPU). Topaz [1] proposed a task-
based language support for the applications running on the
platforms which generate arbitrarily inaccurate results. Sev-
eral recent works [16, 60] allow users to reason about the
behavior of the applications running on approximate com-
puting platforms. At the circuit level, Kulkarni et al. [50]

Fluid: A Framework for Approximate Concurrency via Controlled Dependency Relaxation

designed a power efficient 2 X 2 approximate multiplier, and
Venkataramani et al. [88] proposed Substitute-And-SIMplIfy
(SASIMI) for approximate circuits.

Eager execution: There have been a lot of works in the
past based on eager execution with various approaches pro-
posed for predication and speculative execution [21, 40, 64,
65, 80, 85, 92]. Rinard et al. [71] focused on solving processor
idleness by terminating the threads which run longer than
most other threads. A distortion model helps the user to eval-
uate the effect of terminating some of the application threads
early. Lin et al. [55] proposed both selective push-pull and
statistical barriers primitives to eliminate the synchroniza-
tion requirements for the mainstream applications. Klauser
et al. [47] explored selective eager execution, which over-
comes mis-speculation penalties by executing all possible
paths of the branch. August et al. [6] proposed explicitly
parallel instruction computing (EPIC), which uses a compiler
to perform control speculation, data dependence speculation,
and predication. Paszke et al. [66] employed eager execution
in deep learning frameworks, and Lim et al. [54] evaluated
both eager and lazy solutions for the set cover problem.
Concurrent object-oriented programming (COOP):
Prior works have explored OOP with concurrency 19, 20, 30].
For example, Agha [3], Cantor [5], Pony [22], and P [25]
employed the actor model as a framework for concurrent
systems. Lee et al. [53] presented an object-oriented parallel
programming paradigm, where programmers can build dis-
tributed structures. Yonemwa et al. proposed a COOP model
called ABCL/1 [94] for modeling and concurrent systems. It
incorporated three message-passing patterns. COOL [18] is
an object-based programming language model for parallel
computing. Its runtime system automatically manages task
creation and scheduling.

Continuations/coroutines: Several compilers employ
continuation passing style (CPS) terms as their intermediate
representation for programs [4, 73, 77, 86]. All procedures
in CPS take a continuation that represents the rest of the
computation. Continuation is conceptually a special case
of Fluid computation, where the rest of computation starts
when the current procedure is fully evaluated. The coroutine
is a useful language abstraction for describing a consumer-
producer relationship, where the producer may “yield” to the
consumer whenever new items are created. In the simplest
case, the producer may yield for every new version of data.
Parallel frameworks Recent works studied on increasing
the degree of thread/task-level parallelism by removing se-
lect data dependencies. STATS [24] groups tasks by input
data and generates temporary inputs with auxiliary code.
However, it mainly focuses on streaming benchmarks. AL-
TER [84] allows programmers to annotate a program to relax
data dependencies and increase the parallelism of loop exe-
cution. However, it is limited to instruction-level approxima-
tion. HELIX-UP [14] presents compiler and runtime support
for improving the scalability of the parallel code by relaxing

264

PLDI ’21, June 20-25, 2021, Virtual, Canada

dependencies. There also exist several standard frameworks
for thread-level parallel programming [11, 17, 49].

Shared memory system for chaotic access: SAM [75]
provides a shared memory access system for distributed ma-
chines. This system supports approximate computations if
the task can access the object before it could be fully com-
puted. It implements a global name space and caching which
is essential for chaotic memory accessing and parallel. SAM
primitives are intended to support different systems that
provide chaotic accesses [9, 35, 59, 68].

Value prediction: Recent works have proposed to predict
approximate values via architectural support [58, 81, 83, 91].
Most of such approaches focus on value prediction in the
memory hierarchy. More specifically, dependent instructions
can start their execution with predicted data values, instead
of waiting for long dependency chains to be resolved.
Lock removal: Recent approaches have targeted removing
synchronizations in a selective fashion. Such approaches
include adaptive locking [38], speculative lock elision [44],
relaxing synchronizations by trading off performance for
quality whenever necessary [69], and automatically explor-
ing parallelization opportunities with a given output error
bound [62]. Some other studies remove locks at the begin-
ning of the concurrent program with data race, and then add
the lock back when the statistical accuracy guarantee is sat-
isfied [61] or the concurrency bugs/violations are fixed [41].
Self-adaptive QoS systems: Self-adaptive systems [23, 28,
48] dynamically tune user-specified parameters in a pro-
gram to meet the requirements on output quality. However,
they focus primarily on signal-processing applications, with
well-studied kernels while Fluid targets general-purpose ap-
plications. Having said that, such self-adaptive systems have
developed robust mechanisms that control multiple knobs
over time, which we can certainly adopt in Fluid.

How do we differ? Compared to prior approximate com-
puting works focusing either on particular application do-
mains or on realizing approximation in select system layers,
Fluid is more general, and represents in any application that
employs a producer-consumer execution pattern. Further,
by integrating compiler support with runtime management,
our Fluid framework is able to improve application perfor-
mance without significantly compromising output quality.
The thread-level-parallelism works are orthogonal to Fluid
since the task concept employed in our Fluid region can be
a thread of a multi-threaded application. Compared to the
value prediction-based efforts, Fluid does not require any
new hardware support, and it can proceed with eager values
for code regions that are much larger than a single instruc-
tion. Finally, compared to the lock removal approaches that
try to increase parallelism by eliminating synchronizations,
Fluid gives the user more flexibility in controlling the start
condition of a single task based on each dependent task.

PLDI 21, June 20-25, 2021, Virtual, Canada

10 Conclusions

This paper introduces Fluid computation, a new approach
to eager computation based on Fluid classes that can ex-
pose intermediate versions of select (Fluid) data members
to their Fluid member methods, allowing the relaxation of
traditional data dependency ordering constraints. It presents
the language extensions needed to support Fluid computa-
tions, automated compiler support to translate a program
augmented with Fluid pragmas into a conventional C++ code
consumable by any C++ compiler, and an accompanying run-
time system that controls task scheduling for Fluid methods.
Our experimental results show that Fluid computation can
be an effective way of harnessing the benefits of approximate
computing in a disciplined fashion.

Acknowledgments

The authors sincerely thank Dr. Martin Rinard for shep-
herding the paper and the reviewers for their constructive
feedback. This work is supported by NSF grants #1908793,
#1629915, #1629129, #1763681, #2028929, #2008398, #1931531,
and startup funding from the University of Pittsburgh.

References

[1] Sara Achour and Martin C Rinard. 2015. Approximate computation
with outlier detection in topaz. Acm Sigplan Notices 50, 10 (2015),
711-730. https://doi.org/10.1145/2814270.2814314

[2] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, Cambridge, MA, USA.

[3] Gul Agha. 1990. Concurrent Object-oriented Programming. Commun.
ACM 33, 9 (Sept. 1990), 125-141. https://doi.org/10.1145/83880.84528

[4] Andrew W Appel. 2007. Compiling with continuations. Cambridge
University Press.

[5] W. C. Athas and N. J. Boden. 1988. Cantor: An Actor Program-

ming System for Scientific Computing. In Proceedings of the 1988

ACM SIGPLAN Workshop on Object-based Concurrent Programming.

https://doi.org/10.1145/1806596.1806620

David I. August, Daniel A. Connors, Scott A. Mahlke, John W. Sias,

Kevin M. Crozier, Ben-Chung Cheng, Patrick R. Eaton, Qudus B.

Olaniran, and Wen-mei W. Hwu. 1998. Integrated Predicated and

Speculative Execution in the IMPACT EPIC Architecture. In ISCA.

https://doi.org/10.1109/ISCA.1998.694777

D. P. Bertsekas and D.A Castafion. 1999. Rollout algorithms for

stochastic scheduling problems. In Journal of Heuristics. https:

//doi.org/10.1023/A:1009634810396

Filipe Betzel, Karen Khatamifard, Harini Suresh, David J Lilja, John

Sartori, and Ulya Karpuzcu. 2018. Approximate communication:

Techniques for reducing communication bottlenecks in large-scale

parallel systems. ACM Computing Surveys (CSUR) 51, 1 (2018), 1.

https://doi.org/10.1145/3145812

Roberto Bisiani and Alessandro Forin. 1988. Multilanguage parallel

programming of heterogeneous machines. IEEE Trans. Comput. 37, 8

(1988), 930-945. https://doi.org/10.1109/12.2245

L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington,

R Clint Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Ham-

marling, and Greg Henry. 2002. An updated set of basic linear algebra

subprograms (BLAS). ACM Trans. Math. Software (2002), 135-151.

https://doi.org/10.1145/567806.567807

Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E

Leiserson, Keith H Randall, and Yuli Zhou. 1996. Cilk: An efficient

multithreaded runtime system. Journal of parallel and distributed

(10]

[11

—

265

H. Jiang, H. Zhang, X. Tang, V. Govindaraj, J. Sampson, M. T. Kandemir, and D. Zhang

computing 37, 1 (1996), 55-69. https://doi.org/10.1145/209937.209958
[12] James Bornholt, Todd Mytkowicz, and Kathryn S. McKinley. 2014.
Uncertain<T>: A First-Order Type for Uncertain Data. In ASPLOS.
https://doi.org/10.1145/2541940.2541958
L. Bottou. 2010. Large-scale machine learning with stochastic gradient
descent. In Proc. 19th Int. Conf. Comput. Statist. https://doi.org/10.
1007/978-3-7908-2604-3_16
Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks.
2015. HELIX-UP: Relaxing program semantics to unleash paralleliza-
tion. In CGO. IEEE. https://doi.org/10.1109/CG0.2015.7054203
Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C Rinard.
2012. Proving acceptability properties of relaxed nondeterministic
approximate programs. ACM SIGPLAN Notices 47, 6 (2012), 169-180.
https://doi.org/10.1145/2345156.2254086
Michael Carbin, Sasa Misailovic, and Martin C Rinard. 2013. Ver-
ifying quantitative reliability for programs that execute on unreli-
able hardware. ACM SIGPLAN Notices 48, 10 (2013), 33-52. https:
//doi.org/10.1145/2544173.2509546
Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011.
Habanero-Java: the new adventures of old X10. In Proceedings of the
9th International Conference on Principles and Practice of Programming
in Java. 51-61. https://doi.org/10.1145/2093157.2093165
Rohit Chandra, Anoop Gupta, and John L Hennessy. 1994. COOL:
An object-based language for parallel programming. Computer 27, 8
(1994), 13-26. https://doi.org/10.1109/2.303616
[19] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. 2016.
Revisiting Actor Programming in C++. Comput. Lang. Syst. Struct. 45,
C (April 2016), 105-131. https://doi.org/10.1016/j.c|.2016.01.002
Dominik Charousset, Thomas C. Schmidt, Raphael Hiesgen, and
Matthias Wihlisch. 2013. Native Actors: A Scalable Software Plat-
form for Distributed, Heterogeneous Environments. In Proceedings

[13]

[14]

[15]

[16]

[17]

[18]

[20]

of the 2013 Workshop on Programming Based on Actors, Agents, and

Decentralized Control. https://doi.org/10.1145/2541329.2541336

George Z. Chrysos and Joel S. Emer. 1998. Memory dependence predic-

tion using store sets. In ISCA. https://doi.org/10.1145/279361.279378

Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy

McNeil. 2015. Deny Capabilities for Safe, Fast Actors. In 5th Interna-

tional Workshop on Programming Based on Actors, Agents, and Decen-

tralized Control. https://doi.org/10.1145/2824815.2824816

Rogério De Lemos, David Garlan, Carlo Ghezzi, Holger Giese, Jes-

per Andersson, Marin Litoiu, Bradley Schmerl, Danny Weyns, Lu-

ciano Baresi, Nelly Bencomo, et al. 2017. Software engineering for
self-adaptive systems: Research challenges in the provision of assur-
ances. In Software Engineering for Self-Adaptive Systems IIl. Assurances.

Springer, 3-30. https:/doi.org/10.1007/978-3-319-74183-3_1

Enrico A Deiana, Vincent St-Amour, Peter A Dinda, Nikos Hardav-

ellas, and Simone Campanoni. 2018. Unconventional paralleliza-

tion of nondeterministic applications. In ASPLOS. 432-447. https:

//doi.org/10.1145/3173162.3173181

Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Ra-

jamani, and Damien Zufferey. 2013. P: Safe Asynchronous Event-

driven Programming. In Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. https:

//doi.org/10.1145/2499370.2462184

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.

2012. Neural acceleration for general-purpose approximate programs.

In MICRO. 449-460. https://doi.org/10.1109/MICRO.2012.48

[27] Duan Fanding. 1994. A Faster Algorithm for Shortest-Path - SPFA.
Journal of Southwest Fiaotong University 2 (1994).

[28] Antonio Filieri, Henry Hoffmann, and Martina Maggio. 2015. Auto-
mated multi-objective control for self-adaptive software design. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. 13-24. https://doi.org/10.1145/2786805.2786833

[21]

[22]

[23]

[24]

[25]

[26]

https://doi.org/10.1145/2814270.2814314
https://doi.org/10.1145/83880.84528
https://doi.org/10.1145/1806596.1806620
https://doi.org/10.1109/ISCA.1998.694777
https://doi.org/10.1023/A:1009634810396
https://doi.org/10.1023/A:1009634810396
https://doi.org/10.1145/3145812
https://doi.org/10.1109/12.2245
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/209937.209958
https://doi.org/10.1145/2541940.2541958
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1109/CGO.2015.7054203
https://doi.org/10.1145/2345156.2254086
https://doi.org/10.1145/2544173.2509546
https://doi.org/10.1145/2544173.2509546
https://doi.org/10.1145/2093157.2093165
https://doi.org/10.1109/2.303616
https://doi.org/10.1016/j.cl.2016.01.002
https://doi.org/10.1145/2541329.2541336
https://doi.org/10.1145/279361.279378
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1007/978-3-319-74183-3_1
https://doi.org/10.1145/3173162.3173181
https://doi.org/10.1145/3173162.3173181
https://doi.org/10.1145/2499370.2462184
https://doi.org/10.1145/2499370.2462184
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1145/2786805.2786833

Fluid: A Framework for Approximate Concurrency via Controlled Dependency Relaxation

[29]

(30]

(31]

(32]

(33]

(34]

(35

—

(36

—

(37

—

(38]

(39]

(40]

[41

—

(42]

(43]

(4]

(45]

K. Ganesan, J. San Miguel, and N. Enright Jerger. 2019. The What’s
Next Intermittent Computing Architecture. In HPCA. 211-223. https:
//doi.org/10.1109/HPCA.2019.00039

Sashikumaar Ganesan, Volker John, Gunar Matthies, Raviteja Meesala,
Shamim Abdus, and Ulrich Wilbrandt. 2016. An object oriented par-
allel finite element scheme for computations of PDEs: Design and
implementation. CoRR abs/1609.04809 (2016). https://doi.org/10.1109/
HiPCW.2016.023

Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal
Wiesmann, and Martin Vechev. 2018. Bayonet: Probabilistic Inference
for Networks. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation. https://doi.org/
10.1145/3296979.3192400

Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D.
Nguyen. 2015. ApproxHadoop: Bringing Approximations to MapRe-
duce Frameworks. In ASPLOS. https://doi.org/10.1145/2694344.
2694351

Gagan Gupta, Srinath Sridharan, and Gurindar S. Sohi. 2014. Globally
Precise-restartable Execution of Parallel Programs. In Proceedings of
the 35th Conf. on Programming Language Design and Implementation.
https://doi.org/10.1145/2594291.2594306

J.Han and M. Orshansky. 2013. Approximate Computing: An Emerging
Paradigm For Energy-Efficient Design. In IEEE ETS. https://doi.org/
10.1109/ETS.2013.6569370

Phillip W Hutto and Mustaque Ahamad. 1990. Slow memory: Weaken-
ing consistency to enhance concurrency in distributed shared memo-
ries. In Proceedings., 10th International Conference on Distributed Com-
puting Systems. IEEE Computer Society, 302-303. https://doi.org/10.
1109/1CDCS.1990.89297

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William] Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv
preprint arXiv:1602.07360 (2016).

Intel. 2020. Intel oneAPI Toolkits (Beta). https://software. in-
tel.com/content/www/us/en/developtools/oneapi.html.

Bashima Islam, Faysal Hossain Shezan, and Rifat Shahriyar. 2016.
High Performance Approximate Computing by Adaptive Relaxed Syn-
chronization. In HPCC/SmartCity/DSS 2016. IEEE, 1204-1210. https:
//doi.org/10.1109/HPCC-SmartCity-DSS.2016.0168

Huaipan Jiang, Mengran Fan, Jian Wang, Anup Sarma, Shruti Mohanty,
Nikolay V Dokholyan, Mehrdad Mahdavi, and Mahmut T Kandemir.
2020. Guiding Conventional Protein-Ligand Docking Software with
Convolutional Neural Networks. Journal of Chemical Information and
Modeling 60, 10 (2020), 4594-4602. https://doi.org/10.1021/acs.jcim.
0c00542

Daniel A. Jiménez and Calvin Lin. 2002. Dynamic Branch Prediction
with Perceptrons. In HPCA. https://doi.org/10.1109/HPCA.2001.903263
Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011.
Automated atomicity-violation fixing. In Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and implemen-
tation. https://doi.org/10.1145/1993498.1993544

Keyur Joshi, Vimuth Fernando, and Sasa Misailovic. 2020. Aloe: veri-
fying reliability of approximate programs in the presence of recovery
mechanisms. In CGO. 56-67. https://doi.org/10.1145/3368826.3377924
Alexei Katranov and Alexey Kukanov. 2016. Intel® threading building
block (Intel® TBB) flow graph as a software infrastructure layer for
OpenCL™-based computations. In Proceedings of the 4th International
Workshop on OpenCL. 1-3. https://doi.org/10.1145/2909437.2909446
S Karen Khatamifard, Ismail Akturk, and Ulya R Karpuzcu. 2017. On
Approximate Speculative Lock Elision. IEEE Transactions on Multi-
Scale Computing Systems 4, 2 (2017), 141-151. https://doi.org/10.1109/
TMSCS.2017.2773488

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-
Fei Li. 2011. Novel dataset for fine-grained image categorization:

266

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

PLDI ’21, June 20-25, 2021, Virtual, Canada

Stanford dogs. In Proc. CVPR Workshop on Fine-Grained Visual Catego-
rization (FGVC), Vol. 2. Citeseer.

Orhan Kislal, Piotr Berman, and Mahmut Kandemir. 2012. Improving
the performance of k-means clustering through computation skipping
and data locality optimizations. In Proceedings of the 9th conference on
Computing Frontiers. ACM. https://doi.org/10.1145/2212908.2212951
Artur Klauser, Abhijit Paithankar, and Dirk Grunwald. 1998. Selective
eager execution on the PolyPath architecture. In ISCA. https://doi.
org/10.1109/ISCA.1998.694785

Jeff Kramer and Jeff Magee. 2007. Self-managed systems: an archi-
tectural challenge. In Future of Software Engineering. IEEE, 259-268.
https://doi.org/10.1109/FOSE.2007.19

Alexey Kukanov and Michael J Voss. 2007. The Foundations for Scal-
able Multi-core Software in Intel Threading Building Blocks. Intel
Technology Journal 11, 4 (2007). https://doi.org/10.1535/itj.1104.05
Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. 2011. Trading
Accuracy for Power with an Underdesigned Multiplier Architecture.
In Proc. of International Conference on VLSI Design. https://doi.org/10.
1109/VLSID.2011.51

Michael A. Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke,
Jason Mars, and Lingjia Tang. 2016. Input Responsiveness: Using
Canary Inputs to Dynamically Steer Approximation. In Proceedings of
the 37th Conf. on Programming Language Design and Implementation.
https://doi.org/10.1145/2908080.2908087

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based learning applied to document recognition. Proc. IEEE
86, 11 (1998), 2278-2324. https://doi.org/10.1109/5.726791

J. K. Lee and D. Gannon. 1991. Object Oriented Parallel Program-
ming: Experiments and Results. In Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing (Albuquerque, New Mexico, USA) (Su-
percomputing 91). ACM, New York, NY, USA, 273-282. https://doi.
org/10.1145/125826.105186

Ching Lih Lim, Alistair Moffat, and Anthony Wirth. 2014. Lazy and
Eager Approaches for the Set Cover Problem. In Proceedings of the
Thirty-Seventh Australasian Computer Science Conference.
Tsung-Han Lin, Stephen J Tarsa, and HT Kung. 2013. Paralleliza-
tion primitives for dynamic sparse computations. In 5th { USENIX}
Workshop on Hot Topics in Parallelism (HotPar 13).

Martin Maska, Vladimir Ulman, David Svoboda, Pavel Matula, Petr
Matula, Cristina Ederra, Ainhoa Urbiola, Tomas Espafia, Subramanian
Venkatesan, Deepak M.W. Balak, et al. 2014. A benchmark for compari-
son of cell tracking algorithms. Bioinformatics 30, 11 (2014), 1609-1617.
https://doi.org/10.1093/bioinformatics/btu080

Joshua San Miguel, Jorge Albericio, Natalie Enright Jerger, and Aamer
Jaleel. 2016. The Bunker Cache for Spatio-value Approximation. In
MICRO (MICRO-49). IEEE Press, Article 43, 12 pages. https://doi.org/
10.1109/MICRO.2016.7783746

Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. 2014. Load
Value Approximation. In MICRO. https://doi.org/10.1109/MICRO.2014.
22

Ronald G Minnich and David J Farber. 1993. Reducing host load,
network load and latency in a distributed shared memory. Technical
Reports (CIS) (1993), 459.

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C
Rinard. 2014. Chisel: Reliability-and accuracy-aware optimization of
approximate computational kernels. ACM Sigplan Notices 49, 10 (2014),
309-328. https://doi.org/10.1145/2714064.2660231

Sasa Misailovic, Deokhwan Kim, and Martin Rinard. 2010. Automatic
parallelization with statistical accuracy bounds. Technical Report. MIT
CSAIL/EECS.

Sasa Misailovic, Stelios Sidiroglou, and Martin C Rinard. 2012. Dancing
with uncertainty. In Proceedings of the 2012 ACM workshop on Relaxing
synchronization for multicore and manycore scalability. https://doi.
org/10.1145/2414729.2414738

https://doi.org/10.1109/HPCA.2019.00039
https://doi.org/10.1109/HPCA.2019.00039
https://doi.org/10.1109/HiPCW.2016.023
https://doi.org/10.1109/HiPCW.2016.023
https://doi.org/10.1145/3296979.3192400
https://doi.org/10.1145/3296979.3192400
https://doi.org/10.1145/2694344.2694351
https://doi.org/10.1145/2694344.2694351
https://doi.org/10.1145/2594291.2594306
https://doi.org/10.1109/ETS.2013.6569370
https://doi.org/10.1109/ETS.2013.6569370
https://doi.org/10.1109/ICDCS.1990.89297
https://doi.org/10.1109/ICDCS.1990.89297
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0168
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0168
https://doi.org/10.1021/acs.jcim.0c00542
https://doi.org/10.1021/acs.jcim.0c00542
https://doi.org/10.1109/HPCA.2001.903263
https://doi.org/10.1145/1993498.1993544
https://doi.org/10.1145/3368826.3377924
https://doi.org/10.1145/2909437.2909446
https://doi.org/10.1109/TMSCS.2017.2773488
https://doi.org/10.1109/TMSCS.2017.2773488
https://doi.org/10.1145/2212908.2212951
https://doi.org/10.1109/ISCA.1998.694785
https://doi.org/10.1109/ISCA.1998.694785
https://doi.org/10.1109/FOSE.2007.19
https://doi.org/10.1535/itj.1104.05
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1145/2908080.2908087
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/125826.105186
https://doi.org/10.1145/125826.105186
https://doi.org/10.1093/bioinformatics/btu080
https://doi.org/10.1109/MICRO.2016.7783746
https://doi.org/10.1109/MICRO.2016.7783746
https://doi.org/10.1109/MICRO.2014.22
https://doi.org/10.1109/MICRO.2014.22
https://doi.org/10.1145/2714064.2660231
https://doi.org/10.1145/2414729.2414738
https://doi.org/10.1145/2414729.2414738

PLDI 21, June 20-25, 2021, Virtual, Canada

(63]

[64]

65]

[66]

(67]

(68

—

(69]

[70]

[71

—

[72

—

(73

[t

(74

[l

(75

[

[76

=

(77

—

(78

—

(79]

Subrata Mitra, Manish K Gupta, Sasa Misailovic, and Saurabh Bagchi.
2017. Phase-aware optimization in approximate computing. In CGO.
IEEE, 185-196. https://doi.org/10.1109/CG0.2017.7863739

Andreas Moshovos and Gurindar S. Sohi. 1999. Read-After-Read
Memory Dependence Prediction. In MICRO. https://doi.org/10.1109/
MICRO.1999.809455

Shien-Tai Pan, Kimming So, and Joseph T. Rahmeh. 1992. Improving
the accuracy of dynamic branch prediction using branch correlation.
In ASPLOS. https://doi.org/10.1145/143365.143490

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. 2017. Automatic differentiation in PyTorch. NIPS
2017 Autodiff Workshop (2017).

Do Le Quoc, Ruichuan Chen, Pramod Bhatotia, Christof Fetzer, Volker
Hilt, and Thorsten Strufe. 2017. StreamApprox: approximate com-
puting for stream analytics. In 18th ACM/IFIP/USENIX Middleware
Conference. 185-197. https://doi.org/10.1145/3135974.3135989
Umakishore Ramachandran and M Yousef A Khalidi. 1991. An imple-
mentation of distributed shared memory. Software: Practice and Expe-
rience 21, 5 (1991), 443-464. https://doi.org/10.1002/spe.4380210503
Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi
Nair, and Daniel Prener. 2012. Programming with relaxed synchro-
nization. In Proceedings of the 2012 ACM workshop on Relaxing syn-
chronization for multicore and manycore scalability. 41-50. https:
//doi.org/10.1145/2414729.2414737

Haris Ribic and Yu David Liu. 2014. Energy-efficient work-stealing
Language Runtimes. In ASPLOS. https://doi.org/10.1145/2654822.
2541971

Martin C Rinard. 2007. Using early phase termination to eliminate
load imbalances at barrier synchronization points. In 22nd annual
ACM SIGPLAN conference on Object-oriented programming systems and
applications. 369-386. https://doi.org/10.1145/1297027.1297055

Jia Ru and Jacky Keung. 2013. An empirical investigation on the sim-
ulation of priority and shortest-job-first scheduling for cloud-based
software systems. In 2013 22nd Australian Software Engineering Con-
ference. IEEE, 78-87. https://doi.org/10.1109/ASWEC.2013.19

Adrian Sampson, André Baixo, Benjamin Ransford, Thierry Moreau,
Joshua Yip, Luis Ceze, and Mark Oskin. 2015. Accept: A programmer-
guided compiler framework for practical approximate computing. Uni-
versity of Washington Technical Report UW-CSE-15-01 1, 2 (2015).
Adrian Sampson, Pavel Panchekha, Todd Mytkowicz, Kathryn S.
McKinley, Dan Grossman, and Luis Ceze. 2014. Expressing and Ver-
ifying Probabilistic Assertions. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion. https://doi.org/10.1145/2594291.2594294

Daniel J Scales and Monica S Lam. 1994. An efficient shared memory
layer for distributed memory machines. Computer Systems Laboratory,
Stanford University.

Tao B Schardl, I-Ting Angelina Lee, and Charles E Leiserson. 2018. Brief
announcement: Open cilk. In Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures. 351-353. https://doi.org/
10.1145/3210377.3210658

Hashim Sharif, Prakalp Srivastava, Muhammad Huzaifa, Maria Kot-
sifakou, Keyur Joshi, Yasmin Sarita, Nathan Zhao, Vikram S Adve,
Sasa Misailovic, and Sarita Adve. 2019. ApproxHPVM: a portable
compiler IR for accuracy-aware optimizations. Proceedings of the
ACM on Programming Languages 3, OOPSLA (2019), 186. https:
//doi.org/10.1145/3360612

Alfonso Shimbel. 1954. Structure in communication nets. In Proceed-
ings of the symposium on information networks. Polytechnic Institute
of Brooklyn, 119-203.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolu-
tional networks for large-scale image recognition. arXiv (2014).

267

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

H. Jiang, H. Zhang, X. Tang, V. Govindaraj, J. Sampson, M. T. Kandemir, and D. Zhang

Samantika Subramaniam and Gabriel H. Loh. 2006. Store Vectors for
Scalable Memory Dependence Prediction and Scheduling. In HPCA.
https://doi.org/10.1109/HPCA.2006.1598113

Mark Sutherland, Joshua San Miguel, and Natalie Enright Jerger. 2015.
Texture cache approximation on GPUs. In Workshop on Approximate
Computing Across the Stack.

X. Tang, A. Pattnaik, H. Jiang, O. Kayiran, A. Jog, S. Pai, M. Ibrahim,
M. T. Kandemir, and C. R. Das. 2017. Controlled Kernel Launch for
Dynamic Parallelism in GPUs. In HPCA. 649-660. https://doi.org/10.
1109/HPCA.2017.14

Bradley Thwaites, Gennady Pekhimenko, Hadi Esmaeilzadeh, Amir
Yazdanbakhsh, Jongse Park, Girish Mururu, Onur Mutlu, and Todd
Mowry. 2014. Rollback-free value prediction with approximate loads.
In 2014 23rd International Conference on Parallel Architecture and Com-
pilation Techniques (PACT). IEEE, 493-494. https://doi.org/10.1145/
2628071.2628110

Abhishek Udupa, Kaushik Rajan, and William Thies. 2011. ALTER:
exploiting breakable dependences for parallelization. In Proc. of the
32nd Conference on Programming language Design and Impl. https:
//doi.org/10.1145/1993498.1993555

Augustus K. Uht, Vijay Sindagi, and Kelley Hall. 1995. Disjoint eager
execution: an optimal form of speculative execution. In MICRO. https:
//doi.org/10.1109/MICRO.1995.476841

Radha Venkatagiri, Abdulrahman Mahmoud, Siva Kumar Sastry Hari,
and Sarita V Adve. 2016. Approxilyzer: Towards a systematic frame-
work for instruction-level approximate computing and its application
to hardware resiliency. In MICRO. IEEE Press, 42. https://doi.org/10.
1109/MICRO.2016.7783745

Swagath Venkataramani, Vinay K. Chippa, Srimat T. Chakradhar,
Kaushik Roy, and Anand Raghunathan. 2013. Quality programmable
vector processors for approximate computing. In MICRO. https:
//doi.org/10.1145/2540708.2540710

Swagath Venkataramani, Kaushik Roy, and Anand Raghunathan. 2013.
Substitute-and-Simplify: A Unified Design Paradigm for Approximate
and Quality Configurable Circuits. In DATE. https://doi.org/10.7873/
DATE.2013.280

Renxiao Wang, Xueliang Fang, Yipin Lu, Chao-Yie Yang, and Shaomeng
Wang. 2005. The PDBbind database: methodologies and updates.
Journal of medicinal chemistry 48, 12 (2005), 4111-4119. https:
//doi.org/10.1021/jm048957q

Amir Yazdanbakhsh, Divya Mahajan, Hadi Esmaeilzadeh, and Pejman
Lotfi-Kamran. 2016. AxBench: A multiplatform benchmark suite for
approximate computing. IEEE Design & Test 34, 2 (2016), 60-68. https:
//doi.org/10.1109/MDAT.2016.2630270

Amir Yazdanbakhsh, Gennady Pekhimenko, Bradley Thwaites, Hadi
Esmaeilzadeh, Onur Mutlu, and Todd C Mowry. 2016. RFVP: Rollback-
free value prediction with safe-to-approximate loads. ACM Trans-
actions on Architecture and Code Optimization 12, 4 (2016), 1-26.
https://doi.org/10.1145/2836168

Tse-Yu Yeh and Yale N Patt. 1992. Alternative implementations of two-
level adaptive branch prediction. ACM SIGARCH Computer Architecture
News 20, 2 (1992), 124-134. https://doi.org/10.1145/146628.139709
Shuangye Yin, Lada Biedermannova, Jiri Vondrasek, and Nikolay V
Dokholyan. 2008. MedusaScore: an accurate force field-based scoring
function for virtual drug screening. Journal of chemical information and
modeling 48, 8 (2008), 1656—1662. https://doi.org/10.1021/ci8001167
Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. 1986.
Object-oriented concurrent programming in ABCL/1. ACM SIGPLAN
Notices 21, 11 (1986), 258-268. https://doi.org/10.1145/960112.28722
Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A Kelner, and Martin
Rinard. 2012. Randomized accuracy-aware program transformations
for efficient approximate computations. ACM SIGPLAN Notices 47, 1
(2012), 441-454. https://doi.org/10.1145/2103621.2103710

https://doi.org/10.1109/CGO.2017.7863739
https://doi.org/10.1109/MICRO.1999.809455
https://doi.org/10.1109/MICRO.1999.809455
https://doi.org/10.1145/143365.143490
https://doi.org/10.1145/3135974.3135989
https://doi.org/10.1002/spe.4380210503
https://doi.org/10.1145/2414729.2414737
https://doi.org/10.1145/2414729.2414737
https://doi.org/10.1145/2654822.2541971
https://doi.org/10.1145/2654822.2541971
https://doi.org/10.1145/1297027.1297055
https://doi.org/10.1109/ASWEC.2013.19
https://doi.org/10.1145/2594291.2594294
https://doi.org/10.1145/3210377.3210658
https://doi.org/10.1145/3210377.3210658
https://doi.org/10.1145/3360612
https://doi.org/10.1145/3360612
https://doi.org/10.1109/HPCA.2006.1598113
https://doi.org/10.1109/HPCA.2017.14
https://doi.org/10.1109/HPCA.2017.14
https://doi.org/10.1145/2628071.2628110
https://doi.org/10.1145/2628071.2628110
https://doi.org/10.1145/1993498.1993555
https://doi.org/10.1145/1993498.1993555
https://doi.org/10.1109/MICRO.1995.476841
https://doi.org/10.1109/MICRO.1995.476841
https://doi.org/10.1109/MICRO.2016.7783745
https://doi.org/10.1109/MICRO.2016.7783745
https://doi.org/10.1145/2540708.2540710
https://doi.org/10.1145/2540708.2540710
https://doi.org/10.7873/DATE.2013.280
https://doi.org/10.7873/DATE.2013.280
https://doi.org/10.1021/jm048957q
https://doi.org/10.1021/jm048957q
https://doi.org/10.1109/MDAT.2016.2630270
https://doi.org/10.1109/MDAT.2016.2630270
https://doi.org/10.1145/2836168
https://doi.org/10.1145/146628.139709
https://doi.org/10.1021/ci8001167
https://doi.org/10.1145/960112.28722
https://doi.org/10.1145/2103621.2103710

	Abstract
	1 Introduction
	2 Approximated Data Dependency
	3 Fluid Execution
	3.1 Overview of Fluid Execution
	3.2 Fluid Concurrency
	3.3 Discussion

	4 Program Language Support
	4.1 Syntax and Semantics
	4.2 Synchronization APIs
	4.3 A Fluid Code Example: Edge Detection
	4.4 Valve and Threshold Selection and Automation

	5 Compiler Support
	6 Runtime Support
	6.1 State Machine for Fluid Tasks
	6.2 Fluid Region Scheduling

	7 Evaluation
	7.1 Applications and Methodology
	7.2 Fluid Execution Time and Accuracy
	7.3 Overhead and Sensitivity Profiling
	7.4 Combining Fluid with Other Approximations
	7.5 Fluidizing Multithreaded Codes

	8 Planned Future Work
	9 Related Work
	10 Conclusions
	References

