
Parallelizing DNN Training on GPUs: Challenges and
Opportunities

Weizheng Xu
University of Pittsburgh
Pittsburgh, PA, USA
wex43@pitt.edu

Youtao Zhang
University of Pittsburgh
Pittsburgh, PA, USA
zhangyt@cs.pitt.edu

Xulong Tang
University of Pittsburgh
Pittsburgh, PA, USA

tax6@pitt.edu

ABSTRACT
In recent years, Deep Neural Networks (DNNs) have emerged as a
widely adopted approach in many application domains. Training
DNN models is also becoming a significant fraction of the data-
center workload. Recent evidence has demonstrated that modern
DNNs are becoming more complex and the size of DNN parame-
ters (i.e., weights) is also increasing. In addition, a large amount
of input data is required to train the DNN models to reach target
accuracy. As a result, the training performance becomes one of the
major challenges that limit DNN adoption in real-world applica-
tions. Recent works have explored different parallelism strategies
(i.e., data parallelism and model parallelism) and used multi-GPUs
in datacenters to accelerate the training process. However, naively
adopting data parallelism and model parallelism across multiple
GPUs can lead to sub-optimal executions. The major reasons are
i) the large amount of data movement that prevents the system
from feeding the GPUs with the required data in a timely manner
(for data parallelism); and ii) low GPU utilization caused by data
dependency between layers that placed on different devices (for
model parallelism).

In this paper, we identify the main challenges in adopting data
parallelism and model parallelism on multi-GPU platforms. Then,
we conduct a survey including recent research works targeting
these challenges. We also provide an overview of our work-in-
progress project on optimizing DNN training on GPUs. Our results
demonstrate that simple-yet-effective system optimizations can
further improve the training scalability compared to prior works.

CCS CONCEPTS
• Computing methodologies→Massively parallel and high-
performance simulations; •Computer systems organization
→Multiple instruction, multiple data.

KEYWORDS
deep neural networks, data parallelism, model parallelism, GPUs

ACM Reference Format:
Weizheng Xu, Youtao Zhang, and Xulong Tang. 2021. Parallelizing DNN
Training on GPUs: Challenges and Opportunities. In Companion Proceed-
ings of the Web Conference 2021 (WWW ’21 Companion), April 19–23, 2021,

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8313-4/21/04.
https://doi.org/10.1145/3442442.3452055

Ljubljana, Slovenia. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3442442.3452055

1 INTRODUCTION
With the capability to provide unprecedented accuracy, Deep Neu-
ral Networks (DNNs) have emerged as one of the most popu-
lar techniques to solve real-world problems. However, training
DNN models is very computing resource-demanding and time-
consuming [8, 9, 46]. For example, training a large BERT model
takes up to 3 days on 16 Google TPUs [13] and it takes more than
40 days to train an AlphaGo Zero system [49]. As a result, training
large-scale DNN models is generally deployed in datacenters and
occupies thousands of machine-hours. As reported by recent study,
training DNN is becoming a significant fraction of the datacen-
ter workload, and optimizing/accelerating the training process has
significant cost, resource and SLA implications [18, 31].

GPU0 GPU1 GPU2

(a) Data Parallelism

(b) Model Parallelism—tensor slicing

(b) Model Parallelism—layer-wise

GPU0

GPU0

GPU1

GPU2

GPU1

GPU2

Figure 1: Data parallelism and model parallelism on multi-
GPU systems.

To accelerate the DNN training process, multi-GPU in data-
centers are adopted with two types of parallelization strategies
(data parallelism and model parallelism) [25, 33]. In data parallelism
(shown in Figure 1(a)), the input data is split into mini-batches and
the mini-batches are distributed across GPUs. DNN model weights
are replicated on each GPU and synchronization is performed at
the end of each batch processing to gather the gradients and up-
date the model weights [26]. For model parallelism, there are two
incarnations: tensor slicing and layer-wise [40, 44]. As shown in

174

https://doi.org/10.1145/3442442.3452055
https://doi.org/10.1145/3442442.3452055
https://doi.org/10.1145/3442442.3452055


WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia Xu et al.

Figures 1(b) and (c), tensor slicing horizontally partitions the model
by neurons in each layer, whereas layer-wise splits the DNN model
into different subsets of neural network layers. Different model
partitions are computed on separate GPUs and the intermediate
computation results at the layer boundaries are transferred between
GPUs. In practice, model parallelism is generally combined with
pipelining the computations from consecutive batches to achieve
high training throughput on multiple GPUs [14, 15, 21, 47]. We
refer to this method as pipeline parallelism [3, 23, 45, 47]. According
to how the weights are updated, existing pipeline parallelism ap-
proaches can be classified into two categories: synchronous pipeline
parallelism [20] and asynchronous pipeline parallelism [29]. We
will further investigate them in section 2 and section 3.

While data parallelism and pipeline parallelism speed up the
training process, naively adopting them across multiple GPUs can
lead to non-scalable execution times. We observe that there is no
one-size-fits-all parallelization strategy due to the DNN intrinsic
challenges. These challenges limit the scalable training performance
that one can obtain by using multiple GPUs in datacenters. In this
paper, we first provide a detailed summary of the challenges and
include a survey of recent efforts in addressing the challenges. Then,
we discuss our on-going project with several simple-yet-effective
approaches to improve the training performance.

2 CHALLENGES
Challenge 1: Data movement overhead. The data parallelism
involves different types of data movements among GPUs [11, 43].
Specifically, each GPU has to wait for the mini-batch data to be
transferred and model weights to be broadcasted before starting
forward propagation. Also, after backward propagation, the gra-
dients on each GPU need to be gathered and then used to update
the model weights. Therefore, adopting data parallelism across
multiple GPUs involves expensive data movement, leading to GPU
under-utilization and performance degradation. For pipeline par-
allelism, although there exists data movement between GPUs at
the layer boundaries, it can be effectively hidden by using the asyn-
chronous memory copy that overlaps the data transfer with compu-
tations [34]. Therefore, data movement overhead is less dominating
in pipeline parallelism compared to it in data parallelism.
Challenge 2: Load imbalance and straggler effect. Pipeline par-
allelism allows training large models whose model size exceeds
single GPU memory capacity. It achieves that by partitioning the
model among different GPUs. However, each partition may have dif-
ferent amount of computation and communication loads, leading to
imbalanced workloads across different GPUs [29]. Such imbalance
may cause under-utilization of GPU resources. More importantly,
when the resource configurations (e.g., computation power and
memory space) of the GPUs are heterogeneous or dynamic (al-
ways happen in the datacenter environment), the straggler effect
is another non-negligible reason that causes poor training perfor-
mance [34]. Note that, load imbalance is not a problem in data
parallelism, as the workload of each GPU is approximately equal.
Challenge 3: Synchronization overhead. As we mentioned in
section 1, existing pipeline parallelism approaches can be roughly
classified into synchronous pipeline parallelism and asynchronous
pipeline parallelism, based on the way that the weights are updated.

The synchronous pipeline parallelism requires necessary gradient
synchronizations between adjacent training iterations1 to ensure
convergence without accuracy degradation. Because each GPU
only needs to maintain the weights update of its own partition,
the synchronizations are implemented within each GPU. Recall
our discussion in pipeline parallelism where intermediate results
are transferred across GPUs, therefore, there are many “bubble
areas” (GPU idleness) in the execution pipeline due to the interme-
diate data transfer and the within GPU synchronizations. For data
parallelism, most of the synchronization overheads are caused by
data movements and we have considered them in data movement
overhead.
Challenge 4: Weight inconsistency and weight staleness.
Asynchronous pipeline parallelism updates the weights asyn-
chronously during training. In general, asynchronous pipeline par-
allelism improves pipeline utilization and has a better performance
compared to the synchronous approach. However, it incurs weight
inconsistency or weight staleness issues due to the cross-training
of multiple batches. Training with weight inconsistency means that
the forward pass and backward pass of one batch use different ver-
sions of weights. For weight staleness, let us assume that a model is
split into n partitions. Under weight staleness, the gradients in the
1st weight partition are computed using the version of the 1st par-
tition that are updated n iterations before (i.e., the “stale” weights).
Similarly, gradients in the 2nd partition are computed with weights
that are n − 1 iterations before. This discrepancy in weight ver-
sions can slow down the training convergence. As a result, weight
staleness and weight inconsistency lead to training instability and
accuracy loss.
Challenge 5: Insufficient GPUmemory. As GPUs generally fea-
ture a small capacity of high-bandwidth memory compared to CPU
host memory, both data parallelism and pipeline parallelism may
suffer from insufficient GPU memory when training DNNs with
large model size and/or large input data size. In data parallelism,
DNNs with large model sizes cannot be deployed on the GPUs
since models have to be duplicated across the GPUs. In synchro-
nous pipeline parallelism, it tries to schedule as many batches as
possible to the first GPU at once. However, this may significantly
increase the memory requirement for holding intermediate compu-
tation results of all concurrent batches. In asynchronous pipeline
parallelism, it needs to keep multiple versions of weights on each
GPU to avoid weight inconsistency [29]. Therefore, more memory
is required to store different weight versions.

3 A SURVEY OF PARALLELIZING DNN
TRAINING

3.1 Reducing Data Movement
Data movement is one of the main challenges in data paral-
lelism. Several prior works focus on reducing data movement over-
head [6, 10, 12, 16, 17, 19, 32, 38, 42]. Among these efforts, model
compression has been demonstrated as an effective method to re-
duce the memory requirement for large DNN models. Specifically,
the parameter pruning [16, 17] and quantization [10] based meth-
ods explore the redundancy in the model parameters and remove
1An iteration is defined as processing one batching including forward pass and back-
ward pass.

175



Parallelizing DNN Training on GPUs: Challenges and Opportunities WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia

Table 1: List of recent works.
Challenges Related works
Data movement overhead [6, 10, 12, 16, 17, 19, 32, 38, 42, 43]
Load imbalance and straggler effect [14, 20, 28–30, 41, 50]
Synchronization overhead [2, 20, 22, 35, 36]
Weight inconsistency and weight staleness [5, 15, 24, 27, 29, 34, 45, 48]
Insufficient GPU memory [4, 7, 20, 21, 29, 30, 37, 39]

the redundant parameters that are not sensitive to the performance.
For example, Deep Compression [17] quantizes the weights and
uses Huffman coding to encode the quantized weights. CLIP-Q [42]
proposes joint network pruning and weight quantization in a single
learning framework. However, their approaches require more itera-
tions to converge. Low-rank factorization [12] uses matrix/tensor
decomposition to estimate the informative parameters of the DNNs.
The knowledge distillation [19] method learns a distilled model and
trains a compact neural network to reproduce the output of a larger
network. These approaches achieve significant data movement re-
duction. However, they either require modifications of the network
architectures or ineffective in training on multi-GPU platforms.

3.2 Optimizing Load Imbalance and Straggler
In pipeline parallelism, the DNN model is partitioned into a group
of layers and placed on different GPUs. Different partitioning al-
gorithms can significantly affect the overall training performance.
At a high-level, two types of optimizations have been explored by
prior works.

Static partitioning. An intuitive method for workload balancing
is to partition the DNN model into groups of layers in a topology-
aware manner such that each group completes at a similar rate.
Static partitioning is conducted based on the DNN network topol-
ogy and the hardware configuration before training. It has been
used in some recent works [29, 30, 50]. However, there are two
potential problems in static partitioning: 1) it is difficult to evenly
partition the model due to the size variance of parameters in dif-
ferent layers; and 2) when the execution is dynamic or and the
platform is heterogeneous, the straggler effect diminishes the train-
ing efficiency.

Dynamic partitioning. Dynamic partitioning is more favored in
training in the cloud where the cloud resources exhibit hetero-
geneity and diversity. Elaticpipe [14] proposes an auto-tuning and
flexible partitioning mechanism that can periodically collect the
performance information and redistribute the workload for each
device during runtime. As a result, their approach is able to “auto”
adapt to the dynamic and heterogeneous cloud environment. This
method explores the FLOP-based workload modeling, but extra
scheduling mechanisms are needed.

3.3 Reducing Synchronization Overhead
The synchronous pipeline parallelism requires necessary gradient
synchronizations between adjacent training iterations. The All-
Reduce [35] approach reduces the synchronization overhead, but
with a cost of extra data movement. There are several scheduling
approaches [2, 22, 35] that try to delay the synchronizations. For
example, P3 [22] synchronizes the parameter slices based on their
priority, where the priority of a slice is determined by the time it is
required again in the subsequent iteration. Such an approach can
utilize the available resources more efficiently. However, it needs

modifications to the communication mechanisms and maintains a
priority queue.

3.4 Mitigating Weight Inconsistency and
Staleness

The accuracy in pipeline parallelism suffers from weight stale-
ness and inconsistency issues [29, 48]. PipeDream [29, 30] resolves
weight inconsistency by leveraging weight stashing that keeps mul-
tiple versions of weights. However, it suffers from weight staleness
issue and requires more epochs in training to reach convergence.
Additionally, more memory is required in weight stashing, lead-
ing to failure of training larger DNN using PipeDream. Another
approach is weight prediction which addresses the weight inconsis-
tency and weight staleness issues in the asynchronous pipeline par-
allelism [5, 15]. For example, SpecTrain [5] uses the same pipeline
structure as PipeDream. Instead of storing the weights for each
mini-batch in the pipeline, it uses the smoothed gradients mul-
tiplying the differences between weight versions to predict the
future weights. This method is based on the observation that the
smoothed gradients used in Momentum Stochastic Gradient De-
scent (SGD) can reflect the trend of weight updates. Compared with
SpecTrain, XPipe [15] uses Adam-based weight prediction instead
of Momentum SGD based approach to provide a more effective
solution. Nevertheless, there is no single weight prediction method
that can have comparable performance as synchronous training.
In Table 1, we also summarize other works that focus on weight
inconsistency and weight staleness.

3.5 Addressing Memory Insufficiency
Existing data parallelism and pipeline parallelism suffer from lim-
ited GPU memory capacity when training with large model size
and/or large input data size. For example, the VGG19 with batch size
512 cannot be trained with 4 GTX 1080Ti GPUs due to out of mem-
ory issue. To mitigate the memory insufficiency, re-computation is
proposed by [7]. It reduces memory usage of intermediate results
during DNN training by recomputing the activation instead of stor-
ing them in memory. However, such an approach involves extra
computation overheads, and the performance relies on a good trade-
off between memory usage and computation overhead. GPipe [20]
is a representative work that benefits from using re-computation
method in pipeline parallelism. vDNN [39] proposes swapping
the tensors between CPU and GPU to reduce peak memory con-
sumption. There are also other optimizations from the architectural
aspect. GEMS[21] proposes training a replica of the same DNN in
an inverted manner based on the observation that the GPU has
different memory consumption during the forward and backward
passes. As a complementary work, PipeDream-2BW [30] proposes a
doublebuffered weight updates (2BW) design to reduce the memory
footprint during training. However, these approaches have limited
flexibility depending on the GPU platforms they use.

Takeaway. Considering the current works related to the five
challenges, we can find that 1) most of the works are “point-
solutions” and focus on “single-sourced” performance overheads,
and 2) they have limited performance improvements due to the
involved extra overheads. Therefore, in this paper, we explore sys-
tematic approaches to addressing the challenges with minimized

176



WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia Xu et al.

Table 2: The percentages of execution time spent on data
movement (256 batch size). (I) denotes input batch data and
(M) denotes model parameters. × represents out-of-memory
errors.

Model 1 GPU 2 GPU 3 GPU 4 GPU

I M I M I M I M

ResNet34-256 12.63% 0 22.17% 4.11% 26.20% 5.29% 31.14% 8.57%
ResNet50-256 × × × × 16.89% 3.61% 22.53% 6.52%
VGG19-256 × × × × 8.54% 12.58% 11.29% 21.17%

MobileNet_v2-256 × × 23.13% 0.64% 30.59% 0.85% 38.17% 1.01%

overheads. We also reveal future optimization opportunities to fur-
ther improve the scalable training of DNN models on multi-GPU
datacenters.

4 OUR APPROACHES AND FUTURE
OPPORTUNITIES

Motivated by the aforementioned challenges, we introduce our
on-going work targeting to deliver scalable training on multi-GPU
platforms. At a high-level, our work focuses on two aspects: 1) data
movement in data parallelism and 2) time-to-target accuracy in
pipeline parallelism.

As we mentioned earlier, data movement is one of the major chal-
lenges in data parallelism that hurt the training performance. To
quantify the problem, we characterized the overheads of data move-
ment during training. We classify two types of data movements:
i) input batch data and ii) model parameters. Table 2 summarizes
the percentages of execution time spent on data movement using
four networks under the configurations from 1 GPU to 4 GPUs.
One can observe that i) the data movement overheads occupy a
large portion of the execution time and ii) the overheads increase
with the number of GPUs employed. As a result, the delivered per-
formance hardly scales with the number of GPUs. For example,
ResNet34 with a batch size of 256 only achieves 2.2× execution time
reduction in four GPUs compared to one GPU. To reduce the data
movement overhead, we propose three optimizations: CPU-centric
input batch splitting, mini-batch pre-loading, and model weights
compression. The first two optimizations employ CPU to dispatch
the mini-batches and remove mini-batch transfer from the execu-
tion’s critical path, enabling overlapping of data transfer and GPU
computation. The third optimization explores the similarity among
model weights and leverages compression to significantly reduce
the data transfer with negligible impact on model accuracy. While
we have effectively reduced the data movement overheads, our pro-
posed compression requires extra computations to compress and
decompress the weights. We are currently working on reducing the
compression overheads and leveraging modern GPU features (e.g.,
mix-precision training) to efficiently compress and decompress
the weights without affecting the accuracy. Moreover, our current
project focus on a single-node multi-GPU system. We are planning
to extend our project to consider the data movement involved in
distributed training in datacenters [1, 27].

As we discussed in section 2 and section 3, load imbalance and
weight staleness are two main challenges in asynchronous pipeline
parallelism. In our work, we conduct simulation experiments to

explore the impact of weight staleness on the time-to-target ac-
curacy when the number of GPUs increases. The experiments are
simulated from 1GPU to 16 GPUs. We observed that, as the number
of GPU increases, more epochs would be required to reach a target
accuracy, especially for 8 GPUs and more. For example, the training
with 16 GPUs needs 52 epochs to reach 40% Top-1 accuracy, while
the training with 1 GPU only needs 30 epochs. As a result, even
though each epoch’s execution time is improved by using asynchro-
nous pipeline parallelism, the number of epochs to reach target
accuracy is actually increased. That is, the efficiency of each epoch
training is reduced. Moreover, multiple versions of weights need to
be stored in each GPU to avoid weight inconsistency and staleness,
leading to extra memory cost that affects the efficiency of training
large-scale model.

Inspiring from our analysis, we highlight that when using a large
number of GPUs to train the models (e.g., 8 GPUs and more), the
weight staleness and memory usage for storing multiple versions of
weights issues are important to address. From the structure view, we
will explore to trade memory (with minimized memory overhead)
for efficiency to convergence. That is, we use extra memory to store
more partitions in each device (e.g., two partitions in each GPU
when 4 GPUs are used). With more partitions in each GPU, we can
train our model from bi-direction (one training path is from the
first GPU to the last GPU and the other path is from the last GPU
to the first one). By leveraging this design, we can obtain the latest
version of weight to train the new batch of data, thus improving
each epoch training’s efficiency. Moreover, load imbalance is also
one important overhead in pipeline parallelism. We will explore
periodically shuffling the partitions among GPUs to balance their
workloads. In our current work, wemostly use the layer-wise model
parallelism due to its simplicity. However, it is necessary to consider
tensor slicing for the scenarios that only a single layer cannot fit into
a single device. Thus, given the two types of model parallelism, data
parallelism, and pipeline parallelism, we are exploring combining
them on the multi-GPU system to train large-scale DNN models.

5 CONCLUSION
Training modern DNN models, especially large and giant models,
encounters a “scalability wall” due to the massive data movements,
frequent synchronization, and severe load imbalance. Such over-
heads have been exacerbated by system configurations and model
complexities, making the scaling optimizations difficult to derive
and implement. As a result, the delivered training performance
rarely scales with the increase of computing resources (e.g., num-
ber of GPUs) in the system.

In this paper, targeting multi-GPU platforms, we systematically
summarize the challenges in data parallelism and pipeline paral-
lelism. Moreover, we provide a survey study of recently published
works that target addressing these challenges. We also discuss our
work-in-progress project and show promising initial results on re-
ducing the data movement and mitigating the load imbalance and
weight staleness.

ACKNOWLEDGMENTS
This work is supported in part by NSF grants #2011146 and a startup
funding from the University of Pittsburgh.

177



Parallelizing DNN Training on GPUs: Challenges and Opportunities WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia

REFERENCES
[1] Ammar Ahmad Awan, Jereon Bédorf, Ching-Hsiang Chu, Hari Subramoni, and

Dhabaleswar K Panda. 2019. Scalable distributed dnn training using tensorflow
and cuda-aware mpi: Characterization, designs, and performance evaluation. In
CCGRID. IEEE, 498–507.

[2] Yixin Bao, Yanghua Peng, Yangrui Chen, and Chuan Wu. 2020. Preemptive all-
reduce scheduling for expediting distributed dnn training. In INFOCOM. IEEE,
626–635.

[3] Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis. ACM Computing Surveys
(CSUR) 52, 4 (2019), 1–43.

[4] Zhenkun Cai, Kaihao Ma, Xiao Yan, Yidi Wu, Yuzhen Huang, James Cheng, Teng
Su, and Fan Yu. 2020. TensorOpt: Exploring the Tradeoffs in Distributed DNN
Training with Auto-Parallelism. arXiv preprint arXiv:2004.10856 (2020).

[5] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. 2018. Efficient and
robust parallel dnn training through model parallelism on multi-gpu platform.
arXiv preprint arXiv:1809.02839 (2018).

[6] Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and
Kailash Gopalakrishnan. 2018. Adacomp: Adaptive residual gradient compression
for data-parallel distributed training. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 32.

[7] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep
nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[8] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A survey of model
compression and acceleration for deep neural networks. arXiv preprint
arXiv:1710.09282 (2017).

[9] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project adam: Building an efficient and scalable deep learning training
system. In OSDI. 571–582.

[10] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. 2016. Towards the limit of
network quantization. arXiv preprint arXiv:1612.01543 (2016).

[11] Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and Eric P Xing.
2016. Geeps: Scalable deep learning on distributed gpus with a gpu-specialized
parameter server. In Proceedings of the Eleventh European Conference on Computer
Systems. 1–16.

[12] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando
De Freitas. 2013. Predicting parameters in deep learning. arXiv preprint
arXiv:1306.0543 (2013).

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL]

[14] Jinkun Geng, Dan Li, and ShuaiWang. 2019. Elasticpipe: An efficient and dynamic
model-parallel solution to dnn training. In Proceedings of the 10th Workshop on
Scientific Cloud Computing. 5–9.

[15] Lei Guan, Wotao Yin, Dongsheng Li, and Xicheng Lu. 2019. XPipe: Effi-
cient Pipeline Model Parallelism for Multi-GPU DNN Training. arXiv preprint
arXiv:1911.04610 (2019).

[16] Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dynamic network surgery for
efficient dnns. arXiv preprint arXiv:1608.04493 (2016).

[17] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[18] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. 2018.
Applied machine learning at facebook: A datacenter infrastructure perspective.
In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 620–629.

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2018.
Gpipe: Efficient training of giant neural networks using pipeline parallelism.
arXiv preprint arXiv:1811.06965 (2018).

[21] Arpan Jain, Ammar Awan, Asmaa Aljuhani, Jahanzeb Hashmi, Quentin Anthony,
Hari Subramoni, Dhabaleswar Panda, Raghu Machiraju, and Anil Parwani. 2020.
GEMS: GPU-Enabled Memory-Aware Model-Parallelism System for Distributed
DNN Training. In SC. IEEE Computer Society, 621–635.

[22] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gennady
Pekhimenko. 2019. Priority-based parameter propagation for distributed DNN
training. arXiv preprint arXiv:1905.03960 (2019).

[23] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2018. Beyond data and model paral-
lelism for deep neural networks. arXiv preprint arXiv:1807.05358 (2018).

[24] Atli Kosson, Vitaliy Chiley, Abhinav Venigalla, Joel Hestness, and Urs Köster.
2020. Pipelined Backpropagation at Scale: Training LargeModels without Batches.
arXiv preprint arXiv:2003.11666 (2020).

[25] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997 (2014).

[26] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

[27] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep
gradient compression: Reducing the communication bandwidth for distributed
training. arXiv preprint arXiv:1712.01887 (2017).

[28] Mohammad Hasanzadeh Mofrad, Rami Melhem, Yousuf Ahmad, and Moham-
mad Hammoud. 2020. Accelerating distributed inference of sparse deep neural
networks via mitigating the straggler effect. In HPEC. IEEE, 1–7.

[29] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In SOSP. 1–15.

[30] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Za-
haria. 2020. Memory-efficient pipeline-parallel dnn training. arXiv preprint
arXiv:2006.09503 (2020).

[31] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srinivas Sridharan, Xiaodong
Wang, Whitney Zhao, Serhat Yilmaz, Changkyu Kim, Hector Yuen, Mustafa
Ozdal, et al. 2020. Deep learning training in facebook data centers: Design of
scale-up and scale-out systems. arXiv preprint arXiv:2003.09518 (2020).

[32] Bogdan Nicolae. 2020. DataStates: Towards Lightweight Data Models for Deep
Learning. In SmokyMountains Computational Sciences and Engineering Conference.
Springer, 117–129.

[33] Saptadeep Pal, Eiman Ebrahimi, Arslan Zulfiqar, Yaosheng Fu, Victor Zhang,
Szymon Migacz, David Nellans, and Puneet Gupta. 2019. Optimizing multi-GPU
parallelization strategies for deep learning training. IEEE Micro 39, 5 (2019).

[34] Jay H Park, Gyeongchan Yun, M Yi Chang, Nguyen T Nguyen, Seungmin Lee, Jae-
sik Choi, Sam H Noh, and Young-ri Choi. 2020. HetPipe: Enabling Large {DNN}
Training on (Whimpy) Heterogeneous {GPU} Clusters through Integration of
Pipelined Model Parallelism and Data Parallelism. In ATC. 307–321.

[35] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce algorithms
for clusters of workstations. J. Parallel and Distrib. Comput. 69, 2 (2009), 117–124.

[36] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. 2019. A generic communication scheduler for dis-
tributed dnn training acceleration. In SOSP. 16–29.

[37] S. Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
Memory Optimization Towards Training A Trillion Parameter Models. In SC.

[38] Brandon Reagan, Udit Gupta, Bob Adolf, Michael Mitzenmacher, Alexander
Rush, Gu-Yeon Wei, and David Brooks. 2018. Weightless: Lossy weight encoding
for deep neural network compression. In International Conference on Machine
Learning. PMLR, 4324–4333.

[39] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W
Keckler. 2016. vDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design. In MICRO. IEEE, 1–13.

[40] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-
porn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. 2018. Mesh-tensorflow: Deep learning for supercomputers. arXiv
preprint arXiv:1811.02084 (2018).

[41] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[42] Frederick Tung and Greg Mori. 2018. Clip-q: Deep network compression learning
by in-parallel pruning-quantization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 7873–7882.

[43] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song,
Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dynamic GPU memory man-
agement for training deep neural networks. In PPoPP. 41–53.

[44] Minjie Wang, Chien-chin Huang, and Jinyang Li. 2019. Supporting very large
models using automatic dataflow graph partitioning. In EuroSys. 1–17.

[45] An Xu, Zhouyuan Huo, and Heng Huang. 2020. On the acceleration of deep learn-
ing model parallelism with staleness. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2088–2097.

[46] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul Chilimbi. 2015. Performance
modeling and scalability optimization of distributed deep learning systems. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 1355–1364.

[47] Letian Zhao, Rui Xu, Tianqi Wang, Teng Tian, Xiaotian Wang, Wei Wu, Chio-in
Ieong, and Xi Jin. 2020. BaPipe: Exploration of Balanced Pipeline Parallelism for
DNN Training. arXiv preprint arXiv:2012.12544 (2020).

[48] Xing Zhao, Aijun An, Junfeng Liu, and Bao Xin Chen. 2019. Dynamic stale
synchronous parallel distributed training for deep learning. In ICDCS. IEEE,
1507–1517.

[49] Shuai Zheng, Haibin Lin, Sheng Zha, and Mu Li. 2020. Accelerated Large Batch
Optimization of BERT Pretraining in 54 minutes. arXiv:2006.13484 [cs.LG]

[50] Wentao Zhu, Can Zhao, Wenqi Li, Holger Roth, Ziyue Xu, and Daguang Xu. 2020.
LAMP: Large Deep Nets with Automated Model Parallelism for Image Segmen-
tation. In International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 374–384.

178

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2006.13484

	Abstract
	1 Introduction
	2 Challenges
	3 A Survey of Parallelizing DNN Training
	3.1 Reducing Data Movement
	3.2 Optimizing Load Imbalance and Straggler
	3.3 Reducing Synchronization Overhead
	3.4 Mitigating Weight Inconsistency and Staleness
	3.5 Addressing Memory Insufficiency

	4 Our Approaches and Future Opportunities
	5 Conclusion
	Acknowledgments
	References

