
 1

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

GPGPU-11, February 24–28, 2018, Vienna, Austria

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5647-3/18/02…$15.00

https://doi.org/10.1145/3180270.3180271

Oversubscribed Command Queues in GPUs

Sooraj Puthoor
AMD Research

Sooraj.Puthoor@amd.com

Xulong Tang
Penn State

xzt102@cse.psu.edu

Joseph Gross
AMD Research

Joe.Gross@amd.com

Bradford M. Beckmann
AMD Research

Brad.Beckmann@amd.com

Abstract

As GPUs become larger and provide an increasing number of
parallel execution units, a single kernel is no longer sufficient to
utilize all available resources. As a result, GPU applications are
beginning to use fine-grain asynchronous kernels, which are
executed in parallel and expose more concurrency. Currently, the
Heterogeneous System Architecture (HSA) and Compute Unified
Device Architecture (CUDA) specifications support concurrent
kernel launches with the help of multiple command queues (a.k.a.
HSA queues and CUDA streams, respectively). In conjunction,
GPU hardware has decreased launch overheads making fine-grain
kernels more attractive.

Although increasing the number of command queues is good for

kernel concurrency, the GPU hardware can only monitor a fixed

number of queues at any given time. Therefore, if the number of

command queues exceeds hardware’s monitoring capability, the

queues become oversubscribed and hardware has to service some

of these queues sequentially. This mapping process periodically

swaps between all allocated queues and limits the available

concurrency to the ready kernels in the currently mapped queues.

In this paper, we bring to attention the queue oversubscription

challenge and demonstrate one solution, queue prioritization,

which provides up to 45x speedup for NW benchmark against the

baseline that swaps queues in a round-robin fashion.

CCS CONCEPTS

• Computer systems organization~Single instruction, multiple

data • Software and its engineering~Scheduling

ACM Reference format:

S. Puthoor, X. Tang, J. Gross and B. Beckmann. In GPGPU-11: In

GPGPU-11: General Purpose GPUs, February 24–28, 2018, Vienna,

Austria. ACM, New York, NY, USA, 11 pages.

DOI: https://doi.org/10.1145/3180270.3180271

1. Introduction

GPUs are continually increasing their computational resources with
the latest offerings from AMD and NVIDIA boasting impressive
performance improvements over their previous generations [1][41].
With this increase in hardware resources, there is a demand to run
a more diverse set of applications, such as machine learning, cloud

computing, graph analytics, and high performance computing
(HPC) [42][45][46][51]. While some of these workloads can
launch a single kernel large enough to completely consume the
entire GPU, many others rely on concurrent kernel launches to
utilize all available resources.

 For graphics workloads, the benefits of using concurrent
kernels has been well documented [1][60]. By running multiple
rendering tasks (a.k.a. kernels) concurrently, these tasks can share
the available resources and increase utilization, leading to faster
frame rate within the same power budget. Complementary, there
have been previous works in the HPC domain that have also
increased GPU utilization by running multiple kernels concurrently
[52][56].

To run multiple kernels simultaneously, existing bulk-
synchronous applications are often refactored to use asynchronous
tasks. For these task-based implementations, their execution is
typically represented as a Directed Acyclic Graph (DAG) with
nodes of the DAG representing tasks and the edges representing
dependencies between tasks. From the perspective of a GPU, a task
is an instance of a GPU kernel with its associated arguments. As
the task size decreases, GPU utilization usually increases because
smaller tasks are ready to launch when a smaller fraction of data
and resources become available versus larger tasks. The idea is
similar to filling an hour glass with sand versus marbles. With sand,
the hour glass empties faster because the fine-grain particles
occupy the available free space at the narrow neck more quickly.

Of course, the benefit from running fine-grain tasks depends on
amortizing the launch overhead. This can be done by both reducing
the latency for an individual kernel launch and by allowing multiple
kernel launches simultaneously. To reduce kernel launch latency,
the Heterogeneous System Architecture (HSA) allows applications
to directly enqueue work into user-mode queues and avoids heavy
weight operating system (OS) or GPU driver involvement
[28][47]. To allow simultaneous kernel launches, HSA allows
applications to allocate multiple user-mode queues which hardware
can service simultaneously. Compute Unified Device Architecture
(CUDA) supports a similar feature by allowing applications to
allocate multiple streams [17]. In the extreme case, the concurrency
exposed to hardware is only limited by the virtual memory
available to queue allocation.

 While hypothetically more queues expose more concurrency, it
is not feasible to build a hardware that can simultaneously monitor
many queues. Instead, when the queues created by the application
exceed the number of queues can be monitored by the hardware,
the queues are oversubscribed and the GPU must employ a
procedure to ensure all queues are eventually serviced. For
instance, periodically swapping between all queues at regular
intervals is one obvious solution.

Processing task graphs using this queue swapping mechanism
can cause performance challenges. For example, when tasks in
mapped queues are waiting for tasks in unmapped queues, GPU
utilization can suffer significantly. While hardware will eventually
map the queues with ready tasks ensuring forward progress, the
delay caused by unintelligent queue mapping leads to significant
performance degradation and the degradation becomes worse with
more complex task graphs.

mailto:Permissions@acm.org
https://doi.org/10.1145/3180270.3180271
https://doi.org/10.1145/3180270.3180271

GPGPU’18, Vosendorf, Austria S.Puthoor et al.

 2

In this paper, we bring to attention this overlooked queue
oversubscription challenge and show that a simple queue
scheduling policy guided by prioritization can effectively mitigate
oversubscription and improve the GPU performance.

Specifically, the contributions from this paper are:

 To the best of our knowledge, we are the first to highlight the
largely underappreciated scheduling challenge with
oversubscribed GPU command queues and the first to detail
their scheduling mechanisms.

 We show that a simple priority-based scheduling policy can
reduce the underutilization caused by command queue
oversubscription and increase performance by 91x versus a
naïve round-robin policy and 45x and 43x versus more
optimized policies that do not map empty queues and
immediately unmap queues when they become empty.

 We show that the proposed priority-based scheduling is
particularly beneficial for fine-grain tasks and they achieved
up to 11% speedup versus coarse-grain or medium-grain tasks.

The rest of the paper is organized as follows. Section 2 discusses
the background on GPU command queue oversubscription and
Section 3 introduces the command queue organization. Priority-
based queue scheduling schemes are discussed in detail in Section
4. Section 5 discusses simulation methodology and Section 6
evaluates different queue scheduling policies. Finally, Section 7
reviews related work and Section 8 concludes the paper.

2. Background

Programmers define the parallel portions of applications as
kernels and offload them to GPUs using command queues. Then
GPUs monitor these command queues and execute the submitted
kernels. As GPUs integrate more compute resources, concurrently
executing multiple kernels can more efficiently utilize those
available resources [1][17]. While CUDA requires multiple streams
to achieve kernel concurrency, HSA can launch simultaneously
executing kernels from a single queue [17][28]. HSA can further
increase kernel concurrency with multiple queues by avoiding the
sequential processing overhead of launching kernels from same
queue [47]. Figure 1 shows the speedup of NW application with
multiple HSA queues relative to a single HSA queue. The fine-
grain version of NW has 64 tasks and even for this simple task
graph, multiple HSA queues provide speedup.

While multiple command queues can increase the concurrency
exposed to GPUs, traditional applications use bulk synchronization
that lack multi-kernel concurrency. Meanwhile, structuring
applications as tasks represented by a DAG has been proposed to
increase concurrency [14]. In the DAG-based approach, the entire

computation is represented by a task graph with nodes in the DAG
representing tasks and edges representing the dependencies
between these tasks. Once the application is represented in its DAG
form, programming APIs allow it to be directly exposed to
hardware.

HSA provides features to expose and process task graphs
[27][28][29]. HSA-compatible systems, including commercially
available AMD APUs [10][23], support hardware features, such as
shared coherent virtual memory between different agents (CPU or
GPU devices), and provide a low-level runtime API with extensive
tasking capabilities. The tasking capabilities of HSA-compatible
hardware have been evaluated in the past, highlighting its
performance improvements [47]. HSA provides kernel dispatch
packets that can be used to launch kernels on HSA agents and
barrier packets that can be used to enforce dependencies between
these kernels. Any task graph can be represented with these two
packets by replacing tasks with kernel dispatch packets and edges
with barrier packets. These packets are then enqueued to HSA
queues. Once a kernel finishes execution, the corresponding barrier
packets are processed and the dependent kernels can be launched.
Additionally, since HSA queues are created in user space, there is
no expensive OS involvement while processing packets, which
significantly reduces task dispatch latency. As a result, fine-grain
tasks, whose reduced resource requirement is easier to schedule,
can be launched efficiently.

Historically, CPU task scheduling is managed by software,
either the OS or user-level runtime, and benefits from a higher
level, global view of the system. In general, the task scheduling
problem is known to be NP-complete [55]. Thus, the goal of a task
scheduler should be to find a good heuristic algorithm and make a
best-effort schedule based on application and system knowledge.
For instance, CPU software schedulers manage all active tasks in
the system and schedulers optimized for high-throughput
heterogeneous system can be enhanced with prioritization [15]. The
application or user-level runtime may assign priorities to tasks to
identify those with the earliest finishing time or those on the
critical-path of a data-dependent execution [7], [15], [32].

In contrast to CPUs, GPU task scheduling is exclusively
managed in hardware and current GPU hardware schedulers are
handicapped by minimal knowledge of the kernels. With HSA user
mode queuing, an application can create multiple user mode queues

Figure 2. GPU queue and task scheduling hardware.

Figure 1. NW application speedup with multiple HSA

queues relative to single HSA queue.

0.9

0.95

1

1.05

1.1

1.15

1 2 4 8 16

N
o

rm
al

iz
ed

 s
p

ee
d

u
p

Number of HSA queues

Oversubscribed Command Queues in GPUs GPGPU’18, Vosendorf, Austria

3

(HSA queues) to launch kernels. However, it is challenging for the
GPU to locate all outstanding works on these queues when it can
only monitor a fixed number of queues at a time. Therefore, the
GPU periodically swaps different queues into the available
hardware queue slots (hereafter referred as hardware queues) and
processes ready tasks on the monitored queues. To ensure all
queues are eventually serviced, the hardware will swap in and out
queues at regular intervals, called the scheduling quantum.

When the number of allocated HSA queues is greater than the
number of hardware queues, the GPU wastes significant time
rotating between all allocated queues in search of ready tasks.
Furthermore, barrier packets that handle task dependencies can
block queues while waiting for prior tasks to complete. In this
situation, it is important for the GPU to choose a scheduling policy
that prioritizes queues having ready tasks. In this work, combining
round-robin and priority-based scheduling with various queue
mapping and unmapping criteria, we evaluate five different
scheduling policies (three round-robin and two priority-based).

3. GPU Command Queue Organization

Figure 2 shows the GPU queue scheduling and task dispatching
mechanism used in this paper. The GPU device driver is
responsible for creating queues in the system memory. The driver
also creates a queue list that contains the queue descriptors of all
the queues created by the application. Queue descriptors have all
the necessary information to access HSA queues, such as the
pointer to the base address of a queue. This queue list is passed to
the GPU hardware scheduler during initialization phase. Although
the queue list is read by the hardware scheduler, it is modified only
by the device driver. The hardware scheduler maps and unmaps
queues from the queue list to the hardware list stored inside the
packet processor at each scheduling quantum. The number of
entries in the hardware list is limited and each entry in the hardware
list corresponds to the HSA queue mapped to a hardware queue.
The packet processor monitors these hardware queues, processes
both kernel dispatch and barrier HSA packets, resolves
dependencies expressed by barrier packets and forwards ready

tasks to the dispatcher. The dispatcher then launches these tasks on
the shaders in work-group granularity.

When the HSA queues are oversubscribed, the hardware
scheduler unmaps a queue from the hardware list and maps a new
queue from the queue list. Our baseline hardware scheduler selects
a new queue to be mapped at each scheduling quantum based on a
round-robin policy. However, the newly selected queue may not
have ready tasks, resulting in idling GPU resources. Priority-based
queue scheduling techniques tries to reduce idling by intelligently
mapping a queue with ready tasks. The next section discusses this
priority-based queue scheduling in detail.

4. Priority-Based Queue Scheduling

While HSA can expose more task level concurrency to the GPU, it
shifts the burden of task scheduling to the hardware. In a complex
task graph with hundreds of interdependent tasks, many task queues
can become unblocked at any given time. From a data dependency
standpoint, the task scheduler is free to launch any ready task.
However, a naïve policy may not be able to achieve efficient use of
resources and may leave tasks blocked for long periods of time.

Figure 3 explains the deficiency of the naïve scheduler. Tasks
on the initial critical path of execution are marked in red in Figure
3 (a). After task A is executed, both tasks B and C are ready to
execute. A naïve scheduler could pick either of these two tasks, but
executing task B first is the better scheduling decision because task
B is on the critical path. Task C can be delayed, but Figure 3 (b)
shows delaying the execution of task C until tasks B, D, and F
complete, puts task C on the critical path. A more informed
scheduler would have executed task C before task F.

To make better decisions, a task priority-aware scheduler is
needed. Many techniques have been proposed in literature to
prioritize tasks [15][54]. One such technique is the Heterogeneous
Earliest-Finish-Time (HEFT) algorithm proposed by Topçuoğlu et
al. [54] that computes upward ranks of the tasks and selects the task
with highest upward rank for scheduling. A task’s upward rank is
its distance from an exit node. Figure 3 (c) shows the same task
graph from Figure 3 (a) with each task annotated with their upward
rank. The ranking uses HEFT algorithm but assumes equal
computation time for all tasks. Since the tasks are now annotated
with priorities, a scheduler that is aware of the priorities can make
informed scheduling decisions. For example, after task A is
completed, priority-based scheduler will choose task B to be
scheduled because the rank of task B (rank 4) is higher than task C
(rank 3). In this paper, we use this HEFT algorithm to determine
the priorities of each task.

4.1 Priority-based Hardware Scheduling in HSA

There are three challenges to implement a priority-based task
scheduler, (a) the tasks need to be annotated by a ranking algorithm,
(b) these annotations should be exposed to the scheduler, and (c)
the scheduler should be able to use these rankings when making
scheduling decisions.

Since HSA relies on queues to expose concurrency and schedule
tasks, we modified the HSA queue creation API [Figure 4], to
include a priority field. A queue priority (or rank) is a positive
integer value that can be specified at the time of queue creation and

Figure 3. Task graph execution and priorities.

Barrie
r

C

A

B

D

F

G

E

C (3)

A (5)

B (4)

D (3)

F (2)

G (1)

E (2)

C

A

B

D

F

G

E

(a)

(b)

(c)

completed

to be run

Legend

critical path

G E C B A

F D

(d)

Q1 Q2 Q3 Q4 Q5

hsa_queue_create(gpu_agent, queue_size,
 HSA_QUEUE_TYPE_SINGLE, NULL, NULL,
 UINT32_MAX, UINT32_MAX, q_ptr, priority);

Figure 4. HSA API modifications. priority is added to HSA

queue create API.

GPGPU’18, Vosendorf, Austria S.Puthoor et al.

 4

an application can create queues with any priority levels as needed.
An application can then use any ranking algorithm to determine a
task’s priority and enqueue it into the appropriately ranked HSA
queue. Figure 3 (d) shows the mapping of prioritized tasks from
Figure 3 (c) to HSA queues. Q1 corresponds to the HSA queue with
priority 1, Q2 with priority 2 and so on. With the tasks enqueued to
the HSA queue with matching priority, a priority-based queue
scheduling effectively becomes a priority-based task scheduler.

By enqueuing a prioritized task into a related prioritized HSA
queue, the queue scheduler achieves the desired order of task graph
execution. At the beginning of every scheduling quantum, the
priority-based scheduler maps queues with the highest priority to
the hardware queues. Since the application has enqueued tasks to
the queues based on task priority, the scheduler giving preference
to a high priority queue over a low priority queue directly translates
to a high priority task being scheduled before a low priority task.
We describe the round-robin and priority-based scheduling policies
in detail and identify key optimizations for each policy in the next
subsection.

4.2 Scheduling Policies

While round-robin and priority-based scheduling schemes
determine the queue to be mapped, they do not decide when to map
or unmap a queue. Based on when a queue is unmapped, the
scheduling policies are further classified as timeout and immediate.
The default timeout policy waits for the completion of a scheduling
quantum to swap out a queue. This policy will lead to hardware
queue idling if a mapped queue becomes empty in the middle of a
scheduling quantum. To avoid this, we introduced the immediate
scheduling policy that swaps a queue immediately after that queue
runs out of work. This policy allows empty queues to be swapped
out immediately and do not occupy a hardware queue slot.

Mapping an empty queue to a hardware queue can result in its
underutilization. Such a situation can happen if the scheduler is not
aware of the state of the queues and we classify it as a blind
scheduling policy. The blind policy maps a queue even if it is
empty. To determine whether a queue is empty, the hardware
scheduler has to read the queue descriptor before mapping it.
However, this extra memory read is not a big overhead as compared
to a hardware queue idling due to an empty mapped queue.
Combining blind, timeout, and immediate policies with round-
robin and priority-based schemes, we explored three variants of
round-robin scheduling and two variants of priority-based
scheduling.

Round-robin blind (RR-blind): The default round-robin
hardware task scheduler picks the next HSA queue to be mapped to
hardware in simple round-robin fashion. To ensure fair resource
allocation, the GPU task scheduler unmaps one HSA queue and
maps a new one at every scheduling quantum. The selection of the

victim queue to be unmapped is also done using the same round-
robin policy. Since this scheduling policy does not have any notion
about the state of a queue, it is called RR-blind and can end up
mapping an empty HSA queue with no tasks to hardware, resulting
in idle GPU resources. Note that a queue is mapped/unmapped at
the end of a scheduling quantum.

Round-robin timeout (RR-tout): This optimized round-robin
scheduler is similar to the RR-blind but does not map an HSA
queue to a hardware slot if that queue is empty. This scheduling
policy is aware of the state of the queue (empty or non-empty
queue) and uses that information to make a better scheduling
decision than RR-blind. RR-tout also maps/unmaps a queue at the
end of a scheduling quantum, when the scheduling timer timeouts
and hence the name round-robin timeout.

Round-robin immediate (RR-imm): This scheduling policy
further enhances the RR-tout scheduling policy by unmapping
hardware queues as soon as they become empty instead of waiting
for the end of the scheduling quantum. By immediately interrupting
the scheduler in the middle of a scheduling quantum, hardware
ensures its finite hardware queue slots are monitoring non-empty
queues.

Queue priority timeout (QP-tout): This scheduling policy
uses user-provided HSA queue priorities to more effectively
schedule software queues to hardware. At the beginning of every
scheduling quantum, the scheduler maps the highest priority, non-
empty HSA queues. Once mapped to hardware, a queue will never
be unmapped in favor of a lower priority queue before it is emptied.

Queue priority immediate (QP-imm): This is the same as RR-
imm except that the new queue to be mapped is chosen based on its
priority.

Table 1 summarizes these scheduling policies. The blind suffix
in the policy name means that it maps a queue without looking at
its state. The rest of the policies are aware of the state of queue
before mapping and only maps them to hardware when they have
work. The -blind and -tout policies wait for the scheduling quantum
timeout before unmapping a queue, whereas the -imm variant
unmaps a queue immediately after it becomes empty and the
scheduling quantum timeout.

5. Methodology

5.1 Simulator

We used the gem5 [8] simulator for modeling our baseline APU
system. The APU system modeled consists of a detailed x86 out-
of-order CPU model combined with an AMD GCN GPU model [3].
Each compute unit (CU) of the GPU has four, 16-wide SIMD ALUs

Table 1. Scheduling policies.

Policy

name

Scheduling

policy

Mapping

criteria

Unmapping

criteria

RR-blind Round robin Blind Timeout

RR-tout Round robin Queue state

aware

Timeout

RR-imm Round robin Queue state

aware

Immediately

on empty

QP-tout Priority based Queue state

aware

Timeout

QP-imm Priority based Queue state

aware

Immediately

on empty

Table 2. Simulation parameters.

CPU Clock 3GHz

CPU Cores 2

CPU L1 Data Cache 64KB

CPU L1 Instruction Cache 32KB

CPU Shared L2 Cache 2MB

GPU Clock 800MHz

GPU CUs 8

GPU Exec Units 5 (4 VALU and 1 AGU)

GPU Exec Unit width 16

GPU L1 Data Cache 64KB

GPU L1 Instruction Cache 16KB

GPU Shared L2 Cache 512KB

Hardware queues 20

Scheduling quantum 100us

Oversubscribed Command Queues in GPUs GPGPU’18, Vosendorf, Austria

5

and one 16-wide SIMD address generation unit that generates
addresses for memory instructions. Each wavefront has 64 work
items and takes 4 cycles to execute on a 16-wide SIMD execution
unit. To keep execution resources busy during long latency memory
operations, a CU stores up to 40 wavefront contexts, overlapping
execution of different wavefronts with long latency memory
operations. Each CU has a private L1 data cache. The instruction
cache is shared by 4 CUs. All L1 data caches and instruction caches
are backed by a common shared L2. Both CPU and GPU share the
same virtual address space and maintain coherent caches.

The hardware scheduler models the queue swap logic discussed
in Section 3. Different scheduling policies are modeled by the
hardware scheduler and queue swapping is guided by the
scheduling policy. This queue swapping logic can support static
task graph execution, dynamic task graph execution and fork-join
dynamic parallelism supported by CUDA [40]. This model
supports the stock HSA runtime and we used version 1.1 for our
experiments [27]. We run gem5 in system call emulation mode (SE
mode) so that the emulated device driver can communicate with the
HSA runtime via emulated Linux ioctl calls [30]. The emulated
device driver is also responsible for managing the queue structures
in the system memory and communicating this information to the
hardware scheduler using the mechanism described in Section 3.
Since the system does not stall task submission when unmapping
queues and an individual queue is mapped for a long time before
getting unmapped, queue unmapping has minimal impact on
performance, thus we only modeled it functionally.

Table 2 lists the simulation parameters used for the evaluation
of different scheduling policies. The packet processor modeled has
20 hardware queues and all the applications create up to 128 HSA
queues to launch tasks. For queue priority based schedulers, a
prioritized task is enqueued on the HSA queue with the same
priority. But, for round-robin schedulers, the tasks are enqueued
randomly to avoid pathological scenarios. The scheduling quantum
was fixed at 100us. We modeled a GPU core that is similar to an
AMD FX-8800P APU [23] with 8 CUs. These CUs run at 800MHz
frequency whereas CPUs run at a much faster clock speed of 3GHz.
Since our benchmarks are multi-threaded, we instantiated 2 CPU
cores in our system. So, for some benchmarks, our simulated
system will be running both CPU and GPU concurrently with these
heterogeneous cores communicating over a fully coherent cache
subsystem modeled in ruby [38]. Next, we discuss these
benchmarks in detail.

5.2 Benchmarks

We used three task-based benchmarks, Needleman-Wunsch, LU
decomposition and Cholesky factorization [47], to evaluate
different scheduling policies. Since our objective is to use fine-
grain tasks to fill the GPU, we used the asynchronous task-based
versions of these benchmarks instead of their bulk-synchronous
versions. These task-based versions use Asynchronous Task and
Memory Interface (ATMI), a runtime that allows programmers to
specify tasks and their dependencies with simple data structures [4].

Needleman-Wunsch (NW): NW uses the Needleman-Wunsch
algorithm to align protein sequences. It has two type of GPU tasks
operating on a tiled 2-D input matrix. Each task operates on a
predetermined number of tiles. For a given input matrix size, as
number of tiles in a task decreases, the task becomes more fine-
grain and the number of task increases making the task graph more
complex. However, since NW has only GPU tasks, the GPU does
the same amount of work irrespective of the granularity of tasking
for a given input matrix size.

LU Decomposition (LUD): LUD decomposes a tiled 2-D
matrix into an upper and lower triangular matrix. It has four
different types of GPU task that operate on this tiled input matrix.
Similar to NW, the task sizes vary with the number of tiles in a task
and fine-grain tasks operate on fewer tiles, making the task graph
larger and more complex. However, out of the four GPU tasks, one
task always operates on a single tile irrespective of task granularity.
Thus, for tasks of this type, the amount of work done on the GPU
remains same irrespective of the tasking granularity.

Figure 5. Cholesky task graph (a) 2x2 tiled (b) 3x3 tiled. The

shaded nodes represent CPU tasks. The tasks in 2x2 tiled task

graph are 1.5x the tasks in 3x3 tiled task graph.

Table 3. Benchmark tile size, task size, number of tasks and

number of priority levels for a given input matrix size and

different task granularities.

Benchmarks NW LUD Cholesky

Input Size 1536

X

1536

1024

X

1024

2048

X

2048

Tile Size Fine 32 X 32 32 X 32 128 X 128

Medium 32 X 32 32 X 32 256 X 256

Coarse 32 X 32 32 X 32 384 X 384

Task size Fine 10 tiles 1 tile,

6 tiles,

36 tiles

1 tile

Medium 20 tiles 1 tile,

9 tiles,

 81 tiles

1 tile

Coarse 30 tiles 1 tile,

12 tiles,

144 tiles

1 tile

Number of

wavefronts

in a task

Fine 10 1, 6,

576

3, 4, 4

Medium 20 1, 9,

1296

8, 10, 16

Coarse 30 1, 12,

2304

12, 21, 36

Number of

GPU tasks

in task

graph

Fine 275 590 800

Medium 165 362 112

Coarse 130 269 50

Number of

priority

levels in task

graph

Fine 95 94 46

Medium 95 94 22

Coarse 95 94 16

GPGPU’18, Vosendorf, Austria S.Puthoor et al.

 6

Cholesky factorization: Cholesky factorization involves the
factorization of a symmetric positive-definite matrix. The task-
based algorithm of Cholesky factorization employs four different
types of tasks, three GPU tasks and one CPU task, for factorizing a
2-D matrix. Unlike NW or LUD where tasking granularity is
changed by the number of tiles in a task, the tasking granularity of
Cholesky factorization is changed by changing the tile size itself.
Additionally, since there are GPU and CPU tasks in the task graph,
the ratio of work done by CPU and GPU changes depending on the
tasking granularity.

Figure 5 compares the task graph of a 2x2 tiled and 3x3 tiled
Cholesky factorization algorithm. The shaded tasks represent CPU
tasks and the unshaded tasks are GPU tasks. The tile sizes and
hence the task size of a 2x2 task graph is 1.5x that of a 3x3 task
graph. Comparing Figure 5 (a) and Figure 5 (b), the ratio of GPU
to CPU tasks with 2x2 tiling is 1:1 but that of a 3x3 tiling is 3:7.
That means, for Cholesky factorization, unlike NW and LUD, the
amount of work done by GPU is different for different task sizes.

We compared the effect of task granularity on different
scheduling policies by running fine-grain, medium-grain and
coarse-grain tasks. Table 3 lists the task sizes, tile sizes, number of
tasks and number of priority levels in a task graph for different task
granularities and for a given input size. The prioritization policy
uses the HEFT algorithm. As expected, Table 3 shows with finer
task granularity, the number of tasks and task graph complexity
increases. It can also be seen from that table that unlike NW and
Cholesky, different tasks in LUD operate on different number of
tiles. For example, fine-grain LUD tasks operate on 1, 6 and 36 tiles
with these tasks launching 1, 6 and 567 wavefronts respectively.

Thus, even the fine-grain LUD tasks are capable of occupying the
entire GPU. In contrast, even coarse-grain NW or Cholesky do not
launch enough tasks to fill the entire GPU with a capacity of 320
concurrent wavefronts (8 CUs X 40 wavefronts per CU). It should
be noted in fine-grain LUD that 366 out of the 590 tasks are still
large tasks. In this case GPU utilization can still improve, since
asynchronous task scheduling allows small tasks to execute
simultaneously with larger tasks.

Table 3 also shows that the number of priority levels for both
LUD and NW. Since LUD and NW keep the same tile size but only
change the number of tasks for different granularities, the
prioritization levels did not change. Cholesky, on the other hand,
has different tile sizes for different task granularities resulting in
fewer priority levels for coarse-grain tasks.

6. Results

The main objective of priority-based scheduling is to map
oversubscribed queues in the best order to maximize utilization.
Therefore, efficiency of these scheduling policies can be quantified
by measuring idle cycles and the number of active wavefronts. Idle
cycles are the number of cycles the GPU has no work to execute
during task graph execution and are counted starting when the GPU
begins executing the first task until the last GPU task completes.
Fewer idle cycles indicates that the scheduling policy was more
effective in filling available hardware queues. Active wavefronts
are the number of wavefronts that are concurrently running on a
GPU and is a measurement of the resources utilization. Active
wavefronts are sampled each time a new workgroup is launched.
Since active wavefronts measures GPU utilization when it is active
and idle cycles measure the time the GPU is inactive, a combination
of these two gives insight into application performance.

6.1 GPU Idle Cycles

Figure 6 (a) shows the percentage of GPU idle cycles of NW
benchmark for different task granularities using a 2048x2048
matrix. Across all evaluated task granularities, one can see that the
round-robin based scheduling policies leave the GPU idle for much
of application’s execution. As expected, the RR-blind scheduling
policy that maps empty queues performs the worst with more than
97% idle cycles for all evaluated task granularities. Although
optimized RR schedulers (RR-tout and RR-imm) reduce the idle
cycles, it is QP-based scheduling policies that are able to greatly
reduce idle cycles during execution. While QP-tout brings the idle
cycles down to 40%, QP-imm further reduces the idle cycles to
fewer than 10% for all evaluated task granularities. Similar to NW,
LUD also shows significant idle cycle reduction with QP-based
scheduling schemes as shown in Figure 6 (b). Idle cycles are
reduced to just 2% for all experiments with QP-based scheduling.

Figure 6 (c) shows idle cycles for Cholesky benchmark. Except
for the RR-blind scheduling policy, all other scheduling policies
achieve fewer than 15% idle cycles. The task graph for Cholesky
has relatively high concurrency, as indicated by fewer priority
levels in its task graph. For example, the 2048x2048 matrix with
fine-grain tasking has 800 GPU tasks but with just 46 priority levels
(refer Table 3). In contrast, the fine-grain task graph of NW
benchmark with 1536x1536 input matrix has 275 tasks but with 96
priority levels. A higher number of tasks per priority level indicates
that a relatively large number of tasks are ready to execute at any
point during the task graph execution. Because of this, a scheduling
algorithm that maps only non-empty queues is likely to have at least
one ready task among the 20 mapped queues. Hence, even
optimized RR schedulers see few idle cycles for Cholesky. Despite
this, it can be seen from Figure 6 (c) that QP-based schedulers are
able to further reduce idle cycles.

(a) NW

(b) LUD

(c) Cholesky

Figure 6. Percentage of idle cycles of each benchmark for

different task granularities.

0

50

100

150

coarse medium fine

Id
le

 c
yc

le
s

(%
)

RR-blind RR-tout RR-imm QP-tout QP-imm

0

50

100

coarse medium fine

Id
le

 c
yc

le
s

(%
)

RR-blind RR-tout RR-imm QP-tout QP-imm

0

20

40

60

coarse medium fine

Id
le

 c
yc

le
s

(%
)

RR-blind RR-tout RR-imm QP-tout QP-imm

Oversubscribed Command Queues in GPUs GPGPU’18, Vosendorf, Austria

7

6.2 GPU Resource Utilization

GPU utilization is measured by the number of wavefronts
concurrently running on GPU called active wavefronts. Figure 7
shows the active wavefronts normalized to RR-tout scheduling
policy. A large number of active wavefronts potentially indicates
high utilization of GPU resources. For NW, QP scheduling
schemes achieve better GPU utilization, with fine-grain tasks
getting the maximum benefit. Fine-grain tasks expose higher
concurrency and the priority scheduling policies are able to take
advantage of this as indicated by their increase in active
wavefronts. Figure 7 (b) shows active wavefronts improves for
LUD as well with QP-based scheduling and fine-grain tasks.
However, the improvement is only modest (8% for fine-grain tasks)
as compared to NW. Since LUD has large tasks that can fully
occupy a GPU, the active wavefronts are high even when running
a single task. Thus fine-grain tasking achieves only modest
additional improvement by running small tasks with relatively less
resource requirement concurrently with the larger tasks.

Figure 7 (c) shows active wavefronts for Cholesky. Following
the trend of NW and LUD, Cholesky also achieves higher resource
utilization with fine-grain tasks and QP-based scheduling polices.
However, the medium and coarse granular tasks show only modest
utilization improvements with QP-based scheduling. QP-based
scheduling increases utilization of medium-granular tasking by
80% whereas no improvement is visible with coarse-granular
tasking. For coarse-granular tasking, there are just 50 GPU tasks in
the task graph. Since there are 20 hardware queues exposing 20 out

of the 50 available tasks at all times, many tasks are dispatched
simultaneously even with optimized RR scheduling policies.
Because of this, QP cannot do much better than RR variants as
shown by the similar number of active wavefronts across all
scheduling policies for coarse-grain tasks.

6.3 Application Performance

The GPU resource utilization improvement can directly
translate to GPU execution speedup. Figure 8 shows the execution
speedup on GPU for different task granularities normalized against
their RR-tout. For NW, one can see that all task granularities benefit
from QP scheduling with fine-grain tasks improving the most. By
comparing Figure 7 and Figure 8, it can be observed that the
performance benefits directly come from increasing active
wavefronts. Although LUD achieves only a modest increase of
active wavefronts, the GPU shows tangible speedup emphasizing
the ability of parallel tasks to fill more available GPU resources.

However, for Cholesky, the increase of active wavefronts
translates to a significant performance gain only for fine-grain
tasks. The medium granularity tasking shows a slight performance
degradation, while coarse granularity shows a slight improvement.
The performance degradation for medium granularity Cholesky is
due to a decrease in cache hit rate, as shown in Figure 9. One can
observe that both the L1 hit rate [Figure 9 (a)] and L2 hit rate
[Figure 9 (b)] are lower for every scheduling policy compared
against the RR-blind policy.

Increasing active wavefronts can negatively affect the execution
time of concurrently running wavefronts due to interference. As a

(a) NW

(b) LUD

(c) Cholesky

Figure 7. Active wavefronts for different task granularity

normalized to their respective RR-tout.

0

1

2

3

4

coarse medium fine

N
o

rm
al

iz
ed

 a
ct

iv
e

w
av

ef
ro

n
ts

RR-blind RR-tout RR-imm QP-tout QP-imm

0.8

0.9

1

1.1

1.2

1.3

coarse medium fine

N
o

rm
al

iz
ed

 a
ct

iv
e

w
av

ef
ro

n
ts

RR-blind RR-tout RR-imm QP-tout QP-imm

0

4

8

12

16

coarse medium fine

N
o

rm
al

iz
ed

 a
ct

iv
e

w
av

ef
ro

n
ts

RR-blind RR-tout RR-imm QP-tout QP-imm

(a) NW

(b) LUD

(c) Cholesky

Figure 8. Execution speedup on GPU normalized to RR-tout

of each task granularity.

0

1

2

3

coarse medium fine

N
o

rm
al

iz
ed

 G
P

U

sp
ee

d
u

p

RR-blind RR-tout RR-imm QP-tout QP-imm

0

1

2

coarse medium fine

N
o

rm
al

iz
ed

 G
P

U

sp
ee

d
u

p

RR-blind RR-tout RR-imm QP-tout QP-imm

0

1

2

coarse medium fine

N
o

rm
al

iz
ed

 G
P

U

sp
ee

d
u

p

RR-blind RR-tout RR-imm QP-tout QP-imm

GPGPU’18, Vosendorf, Austria S.Puthoor et al.

 8

result, individual wavefronts, and consequently individual kernels,
take longer to complete. Because of this interference, the
throughput benefits from running large number of active
wavefronts can be eclipsed by the longer kernel execution time.

Comparing the cache hit rate [Figure 9] and active wavefronts
of Cholesky [Figure 7 (c)], one can see that with a larger number of
active wavefronts, the L1 and L2 cache hit rates are reduced. Since
all concurrently running wavefronts compete for cache resources,
more active wavefronts result in less cache capacity per wavefront.
This competition for cache resources leads to cache thrashing. This
effect is directly reflected by the increase in GPU stall cycles as
shown in Figure 9 (c). Stall cycles indicate that a CU cannot execute
any instruction because all of its wavefronts are waiting on memory
operations. So, lowering the L1 cache hit rate increases stall cycles,
which leads to GPU performance degradation.

Comparing GPU performance of Cholesky [Figure 8 (c)] and
GPU stall cycles [Figure 9 (c)], it can be observed that the stall
cycles directly correlate with the performance degradation of QP-
based scheduling techniques for medium and coarse granularity
tasking, confirming that benefits from active wavefronts are
negated by interference from greater numbers of wavefronts.
However, for fine-grain tasks, although QP scheduling encounters
a reduced cache hit rate [Figure 9], the relatively large number of
active wavefronts [Figure 7 (c)] overcome the cache hit rate
challenge by overlapping long latency memory accesses with
wavefront execution. This can be seen from Figure 9 (c) where QP-
based scheduling schemes have fewer stall cycles than RR variants.

This reduced stall cycles directly translate to application
performance improvement [Figure 8 (c)].

In addition to GPU execution time, the overall application
execution is also impacted by idle cycles. We show the overall
application speedup with different scheduling policies for different
task granularities in Figure 10. Since the input size is fixed and only
the tasking granularity is changed, all of these experiments perform
the same amount of work. As such, we have normalized this
speedup against coarse-grain RR-timeout. For NW, although
different scheduling policies have similar idle cycle reduction for
all three tasking granularities [Figure 6 (a)], the fine-grain tasks are
able to better utilize the GPU hardware in terms of active cycles
[Figure 7 (a)]. Because of this, QP scheduling polices are the most
effective for fine-grain tasking and achieve 26x speedup over
coarse-grain RR-timeout. In comparison, coarse-grain and
medium-grain tasking achieve a 23x and 24x speedup, respectively.
Overall, fine-grain tasks benefit the most with QP-imm and achieve
11% speedup over QP-imm with coarse-grain tasks.

The speedup of LUD for different task granularities are given in
Figure 10 (b). Unlike NW, the fine-grain tasking does not
outperform coarse-grain tasking by a huge margin with QP
scheduling. Although GPU execution speedup with fine-grain LUD
is 1.6x faster with QP-immediate, medium and coarse are not far
behind with a 1.25x and 1.4x speedup, respectively [Figure 8 (b)].
So, in this case, different granularities benefit similarly in terms of
GPU execution speedup. However, the application speedup of QP-
based scheduling improves by more than 5x for all tasking
granularities because of the reduction in idle cycles [Figure 6 (b)].

(a)

(b)

(c)

Figure 9. Cholesky benchmark (a) GPU L1 cache hit rate (b)

GPU L2 cache hit rate and (c) GPU stall cycles normalized to

RR-tout.

0

50

100

coarse medium fineG
P

U
 L

1
$

 h
it

 r
at

e
(%

)

RR-blind RR-tout RR-imm QP-tout QP-imm

0

50

100

coarse medium fine

G
P

U
 L

2
$

 h
it

 r
at

e
(%

)

RR-blind RR-tout RR-imm QP-tout QP-imm

0

0.5

1

1.5

coarse medium fine

N
o

rm
al

iz
ed

 G
P

U
 s

ta
ll

cy
cl

es

RR-blind RR-tout RR-imm QP-tout QP-imm

(a) NW

(b) LUD

(c) Cholesky

Figure 10. Application speedup for different task

granularities normalized to the RR-tout of coarse-grain task.

0

6

12

18

24

30

coarse medium fine

N
o

rm
al

iz
ed

 s
p

ee
d

u
p RR-blind RR-tout RR-imm QP-tout QP-imm

0

2

4

6

coarse medium fine

N
o

rm
al

iz
ed

 s
p

ee
d

u
p RR-blind RR-tout RR-imm QP-tout QP-imm

0

0.5

1

1.5

2

coarse medium fine

N
o

rm
al

iz
ed

 s
p

ee
d

u
p RR-blind RR-tout RR-imm QP-tout QP-imm

Oversubscribed Command Queues in GPUs GPGPU’18, Vosendorf, Austria

9

Finally, application performance of Cholesky is shown in
Figure 10 (c). The application speedup for different task sizes
follows the same pattern as GPU speedup except for the RR-blind
scheduling policy. Since QP schedulers do not significantly reduce
idle cycles as compared with optimized RR schedulers, the
application performance is determined exclusively by GPU
performance. For RR-blind, although its GPU performance is
comparable to RR-opt for medium and coarse-grain tasks, a greater
percentage of idle cycles reduces overall application performance.

6.4 Scalability of Scheduling Policies

To demonstrate the scalability of scheduling policies, we run the
benchmarks with three different input sizes and fine-grain tasks.
Figure 11 (a) shows the speedup of NW for different input sizes,
normalized against their respective RR-timeout. The 512, 1024 and
1536 in the x-axis denotes an input matrix size of 512x512,
1024x1024 and 1536x1536, respectively. The tasking granularity
is fixed to the fine-grain tasking size of 6 tiles per task across all
these input sizes. From that figure, it can be seen that the
performance of RR-based schedulers is significantly inferior
compared to QP-based schedulers, highlighting the need for better
scheduling policies for oversubscribed queues. The RR-tout and
RR-imm show similar speedup. Although RR-imm unmaps a queue
immediately after that queue gets empty, there is no guarantee that
the newly mapped queue has the right set of tasks. This highlights
the fact that searching for the right set of tasks by mapping and
unmapping queues in a round-robin fashion is the biggest overhead
for RR scheduling policies. QP-based scheduling polices eliminate
this overhead and perform much better, as depicted in Figure 11
(a). QP-imm achieves 45x speedup for the largest input size.
Compared to RR-blind, QP-imm is 91x faster. Figure 11 (a) also
illustrates that QP-based scheduling policies take advantage of the
immediate unmapping of an empty queue resulting in QP-imm
outperforming QP-timeout in all cases. While both QP-imm and
QP-timeout have the same queue mapping-unmapping sequence,
QP-immediate is able to map the next queue immediately without
waiting for the scheduling quantum to complete. This is why QP-
immediate outperforms QP-timeout. LUD speedup [Figure 11 (b)]
follows a similar pattern of NW with larger input sizes getting
higher benefit from QP scheduling. However, the speedup saturates
at the 768x768 input size.

Figure 11 (c) shows the performance of Cholesky for different
input sizes. As discussed in Section 6.1, Cholesky has high
concurrency with larger input sizes and fine-grain tasking, enabling
multiple tasks to be ready for execution at any point. So, even the
optimized RR policies are not suffered from low GPU utilization,
as indicated by the idle cycle percentage [Figure 6 (c)]. Because of
this reason, the opportunities for QP schedulers decrease under
larger inputs. This explains the relatively lower performance
improvement for larger input sizes with QP scheduling for
Cholesky.

7. Related Work

Task scheduling schemes: There has been considerable amount of
research done on efficiently scheduling tasks to improve resource
utilization and power efficiency [6][24][36][44][60][5][19][20].
Chronaki et al. [15] proposed a policy for scheduling dependent
tasks onto the asymmetric cores based upon criticality of each task.
Daoud et al. [18] proposed a compile-time task scheduler based on
the longest dynamic critical path algorithm. Specifically, this
algorithm attempts to identify the most important tasks and assigns
a higher priority to them. Then, the runtime scheduler will take into
account these priorities. Topçuoğlu et al. [54] proposed the
Heterogeneous Earliest Finish Time (HEFT) algorithm and Critical

Path on a Processor (CPOP) algorithm that use upward/downward
rank for fast task scheduling in heterogeneous systems. We used
this HEFT scheduling algorithm for ranking our tasks. However, it
is important to note that the oversubscribed queue challenge
described in this paper is not inherently a task scheduling problem
but a queue scheduling problem. We proposed one solution that
uses the notion of task scheduling to mitigate the queue
oversubscription challenge.

Task prioritization techniques: In addition to providing
insights into task scheduling, Topçuoğlu et al. [54] also propose
several algorithms that can be used to assign priorities to tasks
according to which can be executed in parallel and how great the
computation cost of a task is. Wu et al. [59] proposed modified
critical path based prioritization for task distribution in message
passing systems. Hwang et al. [26][26] presented earliest time first
scheduling algorithm that reduces the communication delays. Tao
et al. [53] proposed a cost driven workflow scheduling algorithm
based on the Markov Chain-based resource availability prediction
model. Wang et al [58] proposed locality aware task prioritization
in GPUs. Compared to all prior efforts, we focus on prioritizing
tasks by prioritizing the queues to which that task is enqueued,
improving the hardware resource utilization and reducing the idle
time of oversubscribed command queues.

While we have used HEFT algorithm for task prioritization, that
algorithm is not suitable for dynamic task graphs where the task
graph is not known a priori. For prioritization of dynamic task
graphs, a heuristic based or dynamic critical-path based algorithms
can be used.

(a) NW

(b) LUD

(c) Cholesky

Figure 11. Application speedup for different input sizes with

fine-grain tasks. The speedup of each input size is normalized

to its RR-tout.

0

20

40

60

512 1024 1536

N
o

rm
al

iz
ed

 s
p

ee
d

u
p RR-blind RR-tout RR-imm QP-tout QP-imm

0

5

10

512 768 1024

N
o

rm
al

iz
ed

 s
p

ee
d

u
p

RR-blind RR-tout RR-imm QP-tout QP-imm

0

1

2

3

1024 1536 2048

N
o

rm
al

iz
ed

 s
p

ee
d

u
p RR-blind RR-tout RR-imm QP-tout QP-imm

GPGPU’18, Vosendorf, Austria S.Puthoor et al.

 10

Fine-grain parallelism: Fine-grain parallelism/tasking is an

effective and widely-used approach to improve resource utilization
on heterogeneous and homogeneous multi-core systems
[33][12][16][21]. However, it requires sophisticated task
scheduling policies to avoid the load imbalance of relatively small
tasks and the overhead they create. Kumar et al. [34] described
Carbon, which uses hardware queues and messaging protocols to
distribute tasks across cores. Blumofe et al. [9] proposed work-
stealing to allow less busy processors to take work from busy
processors to better balance the load. Sanchez et al. [50] presented
asynchronous direct messages for fast communication between
threads in CMP, which is then used in their scheduler to enable
efficient task stealing. Our work uses these asynchronous fine-grain
task-based benchmarks to highlight the importance of better queue
scheduling policies.

Wavefront scheduling: Numerous researches has proposed
efficient wavefront scheduling to hide long latency operations
[39][35][37], maintain cache locality [49][31], and resolve control
divergence [22][48][11]. Narasiman et al. [39] described two-level
warp scheduling that allows groups of threads to execute long
latency operations in an interleaved fashion. Such interleaving can
better hide the long latencies. Rogers et al. [49] proposed cache
conscious wavefront scheduling which improves performance by
avoiding thrashing the cache. Fung et al. [22] dynamically regroups
the threads into groups to reduce the intra-group control
divergence. The focus of our work is command queue scheduling
to reduce the starvation of work on a GPU whereas the wavefront
scheduling efforts try to increase the efficiency of GPU while doing
that work. Hence, our work is orthogonal to these wavefront
scheduling efforts and can be used with any of these wavefront
scheduling policies.

Kernel launch overheads: The overhead of launching kernels
from both host and device has been the investigation topic of many
studies [40] [52][56][57]. Wang et al. [56] characterized dynamic
applications and showed that the overhead, both in terms of
memory space and launch latency, is exponentially increased along
with the number of launched kernels. Wang et al [57] proposed
DTBL on NVIDIA GPU which launches thread blocks instead of
kernels to avoid the launch latency. Chen et al. [13] proposed
compiler support which reuses the parent thread to execute the child
kernels. Hajj et al. [25] proposed a runtime kernel management
which fuses the child kernels since the child kernels are usually
light-weight. Tang et al. [52] pointed out that launching arbitrary
number of child kernels can encounter hardware restrictions. Our
work is orthogonal to these works that aim at reducing kernel
launch overhead.

8. Conclusion

Multiple command queues are used in a GPU to expose application
concurrency. Although a large number of command queues can
increase concurrency, they also cause queue oversubscription and
can lead to idle resources. This paper brings to attention this largely
overlooked problem of queue oversubscription in modern GPUs.

We also showed that this queue oversubscription challenge can
be mitigated by guiding the hardware to service queues in a better
order. Specifically, we evaluate queue prioritization, where the
programmer uses prioritization to create a schedule for servicing
the queues. With our proposed queue prioritization scheme, we
were able to reduce the GPU idling to less than 2% for the evaluated
benchmarks and achieve speedups up to 45x as compared to a naive
round-robin policy.

ACKNOWLEDGMENT

AMD, the AMD Arrow logo, Radeon, and combinations thereof
are trademarks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification purposes only
and may be trademarks of their respective companies.

References

[1] AMD. “Asynchronous shaders”. http://amd-dev.wpengine.netdna-

cdn.com/wordpress/media/2012/10/Asynchronous-Shaders-White-Paper-

FINAL.pdf

[2] AMD. “AMD FirePro GPUs”. http://www.amd.com/en-

us/innovations/software-technologies/apu

[3] AMD. “AMD GCN Architecture”.

https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf

[4] ATMI: https://gpuopen.com/compute-product/atmi/

[5] A. Agarwal and P. Kumar. “Economical Duplication Based Task Scheduling

for Heterogeneous and Homogeneous Computing Systems”. IACC 2009,

2009.

[6] S. Bansal, P. Kumar, and K. Singh. “An Improved Duplication Strategy for

Scheduling Precedence Constrained Graphs in Multiprocessor Systems”.

Parallel and Distributed Systems, IEEE Transactions on, 14(6), 2003

[7] M. Bauer, S. Treichler, E. Slaughter, A. Aiken, “Legion: Expressing Locality

and Independence with Logical Regions.” In the International Conference on

Supercomputing, 2012

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J.

Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M.

Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. “The gem5 simulator.”

SIGARCH Comput. Archit. News, 2011.

[9] R. D. Blumofe and C. E. Leiserson. 1999. “Scheduling multithreaded

computations by work stealing”. J. ACM 46, 5 (September 1999), 720-748.

[10] D. Bouvier, and B. Sander. (2014, August). Applying AMD’s Kaveri APU for

Heterogeneous Computing. In Hot Chips: A Symposium on High Performance

Chips (HC26).

[11] N. Brunie, S. Collange and G. Diamos, "Simultaneous branch and warp

interweaving for sustained GPU performance," 2012 39th Annual International

Symposium on Computer Architecture (ISCA)

[12] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C.

von Praun, and V. Sarkar. “X10: an object-oriented approach to non-uniform

cluster computing”. In Proc. of the 20th annual ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications,

2005

[13] G. Chen and X. Shen. 2015. “Free launch: optimizing GPU dynamic kernel

launches through thread reuse”. In Proceedings of the 48th International

Symposium on Microarchitecture (MICRO-48)

[14] N. Christofides, “Graph Theory: An algorithmic Approach.” 1975.

[15] K. Chronaki, A. Rico, R. M. Badia, E. Ayguadé, J. Labarta and M. Valero.

“Criticality-Aware Dynamic Task Scheduling for Heterogeneous

Architectures”. ICS 2015: 329-338

[16] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and T. Wen.

“Solving large, irregular graph problems using adaptive workstealing”. In

Proc. of the 37th International Conference on Parallel Processing, 2008

[17] CUDA streams. https://devblogs.nvidia.com/parallelforall/gpu-pro-tip-cuda-7-

streams-simplify-concurrency/

[18] M. I. Daoud and N. Kharma, "Efficient compile-time task scheduling for

heterogeneous distributed computing systems," 12th International Conference

on Parallel and Distributed Systems - (ICPADS'06), Minneapolis, MN, 2006,

pp. 9 pp.-.

[19] A. Duran, E. Ayguad´e, R. M. Badia, J. Labarta, L. Martinell, X. Martorell,

and J. Planas. “Ompss: a Proposal for Programming Heterogeneous Multi-

Core Architectures”. Parallel Processing Letters, 21, 2011

[20] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade, J.

Labarta, and M. Valero. 2010. “Task Superscalar: An Out-of-Order Task

Pipeline”. In Proceedings of the 2010 43rd Annual IEEE/ACM International

Symposium on Microarchitecture(MICRO '43).

Oversubscribed Command Queues in GPUs GPGPU’18, Vosendorf, Austria

11

[21] M. Frigo, C. E. Leiserson, and K. H. Randall. “The implementation of the

Cilk-5 multithreaded language”. In Proc. of the ACM SIGPLAN 1998

Conference on Programming Language Design and Implementation, 1998.

[22] W. W. L. Fung, I. Sham, G. Yuan and T. M. Aamodt, "Dynamic Warp

Formation and Scheduling for Efficient GPU Control Flow," 40th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO 2007)

[23] G. Krishnan, D. Bouvier, L. Zhang and P. Dongara. “Energy Efficient

Graphics and Multimedia in 28nm Carrizo APU” In Hot Chips: A Symposium

on High Performance Chips (HC27).

[24] M. Hakem and F. Butelle. “Dynamic Critical Path Scheduling Parallel

Programs onto Multiprocessors”. IPDPS’05, 2005

[25] I. E. Hajj, J. Gomez-Luna, C. Li, L. W. Chang, D. Milojicic and W. m. Hwu,

"KLAP: Kernel launch aggregation and promotion for optimizing dynamic

parallelism," 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO)

[26] J. Hwang, Y. Chow, F. D. Anger and C. Lee. 1989. “Scheduling precedence

graphs in systems with interprocessor communication times”. SIAM J.

Comput. 18, 2 (April 1989)

[27] HSA Foundation. (2016). “HSA Platform System Architecture Specification”.

Version 1.1. http://www.hsafoundation.com/standards

[28] HSA Foundation. “HSA Runtime Programmers Reference Manual. Version

1.1” (2016). http://www.hsafoundation.com/standards

[29] HSA Foundation. (2016). “HSA Runtime Specification”. Version 1.1.

http://www.hsafoundation.com/standards

[30] ioctl: http://man7.org/linux/man-pages/man2/ioctl.2.html

[31] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir, O.

Mutlu, R. Iyer, and C. R. Das. 2013. “OWL: cooperative thread array aware

scheduling techniques for improving GPGPU performance”. In Proceedings of

the eighteenth international conference on Architectural support for

programming languages and operating systems (ASPLOS '13)

[32] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey. HPX: “A

Task Based Programming Model in a Global Address Space”. In Proceedings

of the 8th International Conference on Partitioned Global Address Space

Programming Models (PGAS ‘14), 6:1--6:11, 2014

[33] M. Kulkarni, P. Carribault, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala,

and L. P. Chew. “Scheduling strategies for optimistic parallel execution of

irregular programs”. In Proc. of the 20th annual Symposium on Parallelism in

Algorithms and Architectures, 2008.

[34] S. Kumar, C. J. Hughes and A. Nguyen. 2007. “Carbon: architectural support

for fine-grained parallelism on chip multiprocessors”. SIGARCH Comput.

Archit. News 35, 2 (June 2007), 162-173.

[35] S. Lee and C. Wu. 2014. “CAWS: criticality-aware warp scheduling for

GPGPU workloads”. In Proceedings of the 23rd international conference on

Parallel architectures and compilation (PACT '14)

[36] C.-H. Liu, C.-F. Li, K.-C. Lai, and C.-C. Wu. “A dynamic Critical Path

Duplication Task Scheduling Algorithm for Distributed Heterogeneous

Computing Systems”. volume 1 of ICPADS 2006, 2006.

[37] J. Liu, J. Yang and R. Melhem, "SAWS: Synchronization aware GPGPU warp

scheduling for multiple independent warp schedulers," 2015 48th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO)

[38] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill and D. A. Wood. “Multifacet’s general

execution-driven multiprocessor simulator (gems) toolset”. SIGARCH

Comput. Archit. News, 33(4):92–99, November 2005.

[39] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y.

N. Patt. 2011. “Improving GPU performance via large warps and two-level

warp scheduling”. In Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-44).

[40] NVIDIA “DYNAMIC PARALLELISM IN CUDA”,

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-

dynamic-parallelism

[41] NVIDIA Tesla GPUs: http://www.nvidia.com/object/tesla-servers.html

[42] NVIDIA, “JP Morgan Speeds Risk Calculations with NVIDIA GPUs,” 2011.

[43] OpenMP4.5 Specification. (2015). “The OpenMP Architecture Review

Board”.http://www.openmp.org/mp-documents/openmp-4.5.pdf

[44] A. Page and T. Naughton. “Dynamic Task Scheduling using Genetic

Algorithms for Heterogeneous Distributed Computing”. In Parallel and

Distributed Processing Symposium, 2005.

[45] S. I. Park, S. P. Ponce, J. Huang, Y. Cao and F. Quek, "Low-cost, high-speed

computer vision using NVIDIA's CUDA architecture," 2008 37th IEEE

Applied Imagery Pattern Recognition Workshop, Washington DC, 2008, pp.

1-7.

[46] G. Pratx and L. Xing, “GPU Computing in Medical Physics: A Review,” in

Medical physics, 2011.

[47] S. Puthoor, A. M. Aji, S. Che, M. Daga, W. Wu, B. M. Beckmann, and G.

Rodgers. 2016. “Implementing directed acyclic graphs with the heterogeneous

system architecture.” In Proceedings of the 9th Annual Workshop on General

Purpose Processing using Graphics Processing Unit (GPGPU '16). ACM, New

York, NY, USA, 53-62.

[48] T. G. Rogers, M. O'Connor and T. M. Aamodt, "Divergence-Aware Warp

Scheduling," 2013 46th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO)

[49] T. G. Rogers, M. O'Connor, and T. M. Aamodt. 2012. “Cache-Conscious

Wavefront Scheduling”. In Proceedings of the 2012 45th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-45)

[50] D. Sanchez, R. M. Yoo, and C. Kozyrakis. 2010. “Flexible architectural

support for fine-grain scheduling”. In Proceedings of the fifteenth edition of

ASPLOS on Architectural support for programming languages and operating

systems (ASPLOS XV)

[51] S. S. Stone, J. P. Haldar, S. C. Tsao, W. -m. W. Hwu, B. P. Sutton, and Z. -P.

Liang. 2008. “Accelerating advanced MRI reconstructions on GPUs”. J.

Parallel Distrib. Comput. 68, 10 (October 2008)

[52] X. Tang, A. Pattnaik, H. Jiang, O. Kayiran, A. Jog, S. Pai, M. Ibrahim, M. T.

Kandemir and C. Das . “Controlled Kernel Launch for Dynamic Parallelism in

GPUs.” In proceedings of The 23rd International Symposium on High-

Performance Computer Architecture (HPCA 2017)

[53] Y. Tao, H. Jin, S. Wu, X. Shi, and L. Shi. 2013. “Dependable Grid Workflow

Scheduling Based on Resource Availability”. Journal of grid computing

(2013): 1-15.

[54] H. Topçuoğlu , S. Hariri and Min-You Wu, "Task scheduling algorithms for

heterogeneous processors," Heterogeneous Computing Workshop, 1999.

(HCW '99) Proceedings. Eighth, San Juan, 1999, pp. 3-14.

[55] J. D. Ullman. “NP-Complete Scheduling Problems,” Journal Computer and

Systems Sciences, vol. 10 pp. 384-393, 1975.

[56] J. Wang, and Y. Sudhakar. "Characterization and analysis of dynamic

parallelism in unstructured GPU applications." Workload Characterization

(IISWC), 2014 IEEE International Symposium on. IEEE, 2014.

[57] J. Wang, N. Rubin, A. Sidelnik and S. Yalamanchili, "Dynamic Thread Block

Launch: A lightweight execution mechanism to support irregular applications

on GPUs," 2015 ACM/IEEE 42nd Annual International Symposium on

Computer Architecture (ISCA)

[58] J. Wang, N. Rubin, A. Sidelnik and S. Yalamanchili, "LaPerm: Locality

Aware Scheduler for Dynamic Parallelism on GPUs," 2016 ACM/IEEE 43rd

Annual International Symposium on Computer Architecture (ISCA)

[59] M. Y. Wu and D. D. Gajski, "Hypertool: a programming aid for message-

passing systems," in IEEE Transactions on Parallel and Distributed Systems,

vol. 1, no. 3, pp. 330-343, Jul 1990.

[60] C. Wakeland, A. Lyashevsky and L. Antani. “Scalable Acceleration of Real-

time Audio Processing Using Hardware-Partitioned GPU Compute Units”,

GameSoundCon, 2016. https://www.gamesoundcon.com/2016-game-sound

[61] Z. Zong, A. Manzanares, X. Ruan, and X. Qin. “EAD and PEBD: Two

Energy-Aware Duplication Scheduling Algorithms for Parallel Tasks on

Homogeneous Clusters”. Computers, IEEE Transactions on, 60(3), 2011.

