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Abstract  

As GPUs become larger and provide an increasing number of 
parallel execution units, a single kernel is no longer sufficient to 
utilize all available resources. As a result, GPU applications are 
beginning to use fine-grain asynchronous kernels, which are 
executed in parallel and expose more concurrency. Currently, the 
Heterogeneous System Architecture (HSA) and Compute Unified 
Device Architecture (CUDA) specifications support concurrent 
kernel launches with the help of multiple command queues (a.k.a. 
HSA queues and CUDA streams, respectively). In conjunction, 
GPU hardware has decreased launch overheads making fine-grain 
kernels more attractive.  

Although increasing the number of command queues is good for 

kernel concurrency, the GPU hardware can only monitor a fixed 

number of queues at any given time. Therefore, if the number of 

command queues exceeds hardware’s monitoring capability, the 

queues become oversubscribed and hardware has to service some 

of these queues sequentially. This mapping process periodically 

swaps between all allocated queues and limits the available 

concurrency to the ready kernels in the currently mapped queues. 

In this paper, we bring to attention the queue oversubscription 

challenge and demonstrate one solution, queue prioritization, 

which provides up to 45x speedup for NW benchmark against the 

baseline that swaps queues in a round-robin fashion.  

CCS CONCEPTS 

• Computer systems organization~Single instruction, multiple 

data   • Software and its engineering~Scheduling 
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1. Introduction 

GPUs are continually increasing their computational resources with 
the latest offerings from AMD and NVIDIA boasting impressive 
performance improvements over their previous generations [1][41]. 
With this increase in hardware resources, there is a demand to run  
a more diverse set of  applications, such as machine learning, cloud 

computing, graph analytics, and high performance computing 
(HPC) [42][45][46][51]. While some of these workloads can 
launch a single kernel large enough to completely consume the 
entire GPU, many others rely on concurrent kernel launches to 
utilize all available resources. 

 For graphics workloads, the benefits of using concurrent 
kernels has been well documented [1][60]. By running multiple 
rendering tasks (a.k.a. kernels) concurrently, these tasks can share 
the available resources and increase utilization, leading to faster 
frame rate within the same power budget. Complementary, there 
have been previous works in the HPC domain that have also 
increased GPU utilization by running multiple kernels concurrently 
[52][56]. 

To run multiple kernels simultaneously, existing bulk-
synchronous applications are often refactored to use asynchronous 
tasks. For these task-based implementations, their execution is 
typically represented as a Directed Acyclic Graph (DAG) with 
nodes of the DAG representing tasks and the edges representing 
dependencies between tasks. From the perspective of a GPU, a task 
is an instance of a GPU kernel with its associated arguments. As 
the task size decreases, GPU utilization usually increases because 
smaller tasks are ready to launch when a smaller fraction of data 
and resources become available versus larger tasks. The idea is 
similar to filling an hour glass with sand versus marbles. With sand, 
the hour glass empties faster because the fine-grain particles 
occupy the available free space at the narrow neck more quickly.  

Of course, the benefit from running fine-grain tasks depends on 
amortizing the launch overhead. This can be done by both reducing 
the latency for an individual kernel launch and by allowing multiple 
kernel launches simultaneously. To reduce kernel launch latency, 
the Heterogeneous System Architecture (HSA) allows applications 
to directly enqueue work into user-mode queues and avoids heavy 
weight operating system (OS) or GPU driver involvement  
[28][47]. To allow simultaneous kernel launches, HSA allows 
applications to allocate multiple user-mode queues which hardware 
can service simultaneously. Compute Unified Device Architecture 
(CUDA) supports a similar feature by allowing applications to 
allocate multiple streams [17]. In the extreme case, the concurrency 
exposed to hardware is only limited by the virtual memory 
available to queue allocation. 

 While hypothetically more queues expose more concurrency, it 
is not feasible to build a hardware that can simultaneously monitor 
many queues. Instead, when the queues created by the application 
exceed the number of queues can be monitored by the hardware, 
the queues are oversubscribed and the GPU must employ a 
procedure to ensure all queues are eventually serviced. For 
instance, periodically swapping between all queues at regular 
intervals is one obvious solution. 

Processing task graphs using this queue swapping mechanism 
can cause performance challenges. For example, when tasks in 
mapped queues are waiting for tasks in unmapped queues, GPU 
utilization can suffer significantly. While hardware will eventually 
map the queues with ready tasks ensuring forward progress, the 
delay caused by unintelligent queue mapping leads to significant 
performance degradation and the degradation becomes worse with 
more complex task graphs.  
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In this paper, we bring to attention this overlooked queue 
oversubscription challenge and show that a simple queue 
scheduling policy guided by prioritization can effectively mitigate 
oversubscription and improve the GPU performance.  

Specifically, the contributions from this paper are: 

 To the best of our knowledge, we are the first to highlight the 
largely underappreciated scheduling challenge with 
oversubscribed GPU command queues and the first to detail 
their scheduling mechanisms. 

 We show that a simple priority-based scheduling policy can 
reduce the underutilization caused by command queue 
oversubscription and increase performance by 91x versus a 
naïve round-robin policy and 45x and 43x versus more 
optimized policies that do not map empty queues and 
immediately unmap queues when they become empty. 

 We show that the proposed priority-based scheduling is 
particularly beneficial for fine-grain tasks and they achieved 
up to 11% speedup versus coarse-grain or medium-grain tasks.  

The rest of the paper is organized as follows. Section 2 discusses 
the background on GPU command queue oversubscription and 
Section 3 introduces the command queue organization. Priority-
based queue scheduling schemes are discussed in detail in Section 
4. Section 5 discusses simulation methodology and Section 6 
evaluates different queue scheduling policies. Finally, Section 7 
reviews related work and Section 8 concludes the paper. 

2. Background 

Programmers define the parallel portions of applications as 
kernels and offload them to GPUs using command queues. Then 
GPUs monitor these command queues and execute the submitted 
kernels. As GPUs integrate more compute resources, concurrently 
executing multiple kernels can more efficiently utilize those 
available resources [1][17]. While CUDA requires multiple streams 
to achieve kernel concurrency, HSA can launch simultaneously 
executing kernels from a single queue [17][28]. HSA can further 
increase kernel concurrency with multiple queues by avoiding the 
sequential processing overhead of launching kernels from same 
queue [47]. Figure 1 shows the speedup of NW application with 
multiple HSA queues relative to a single HSA queue. The fine-
grain version of NW has 64 tasks and even for this simple task 
graph, multiple HSA queues provide speedup.   

While multiple command queues can increase the concurrency 
exposed to GPUs, traditional applications use bulk synchronization 
that lack multi-kernel concurrency. Meanwhile, structuring 
applications as tasks represented by a DAG has been proposed to 
increase concurrency [14]. In the DAG-based approach, the entire 

computation is represented by a task graph with nodes in the DAG 
representing tasks and edges representing the dependencies 
between these tasks. Once the application is represented in its DAG 
form, programming APIs allow it to be directly exposed to 
hardware. 

HSA provides features to expose and process task graphs 
[27][28][29]. HSA-compatible systems, including commercially 
available AMD APUs [10][23], support hardware features, such as 
shared coherent virtual memory between different agents (CPU or 
GPU devices), and provide a low-level runtime API with extensive 
tasking capabilities. The tasking capabilities of HSA-compatible 
hardware have been evaluated in the past, highlighting its 
performance improvements [47]. HSA provides kernel dispatch 
packets that can be used to launch kernels on HSA agents and 
barrier packets that can be used to enforce dependencies between 
these kernels. Any task graph can be represented with these two 
packets by replacing tasks with kernel dispatch packets and edges 
with barrier packets. These packets are then enqueued to HSA 
queues. Once a kernel finishes execution, the corresponding barrier 
packets are processed and the dependent kernels can be launched. 
Additionally, since HSA queues are created in user space, there is 
no expensive OS involvement while processing packets, which 
significantly reduces task dispatch latency. As a result, fine-grain 
tasks, whose reduced resource requirement is easier to schedule, 
can be launched efficiently. 

Historically, CPU task scheduling is managed by software, 
either the OS or user-level runtime, and benefits from a higher 
level, global view of the system.  In general, the task scheduling 
problem is known to be NP-complete [55]. Thus, the goal of a task 
scheduler should be to find a good heuristic algorithm and make a 
best-effort schedule based on application and system knowledge. 
For instance, CPU software schedulers manage all active tasks in 
the system and schedulers optimized for high-throughput 
heterogeneous system can be enhanced with prioritization [15]. The 
application or user-level runtime may assign priorities to tasks to 
identify those with the earliest finishing time or those on the 
critical-path of a data-dependent execution [7], [15], [32]. 

In contrast to CPUs, GPU task scheduling is exclusively 
managed in hardware and current GPU hardware schedulers are 
handicapped by minimal knowledge of the kernels. With HSA user 
mode queuing, an application can create multiple user mode queues 

 

 
 

Figure 2. GPU queue and task scheduling hardware. 
 

 

 
Figure 1. NW application speedup with multiple HSA 

queues relative to single HSA queue. 
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(HSA queues) to launch kernels. However, it is challenging for the 
GPU to locate all outstanding works on these queues when it can 
only monitor a fixed number of queues at a time. Therefore, the 
GPU periodically swaps different queues into the available 
hardware queue slots (hereafter referred as hardware queues) and 
processes ready tasks on the monitored queues. To ensure all 
queues are eventually serviced, the hardware will swap in and out 
queues at regular intervals, called the scheduling quantum. 

When the number of allocated HSA queues is greater than the 
number of hardware queues, the GPU wastes significant time 
rotating between all allocated queues in search of ready tasks. 
Furthermore, barrier packets that handle task dependencies can 
block queues while waiting for prior tasks to complete. In this 
situation, it is important for the GPU to choose a scheduling policy 
that prioritizes queues having ready tasks. In this work, combining 
round-robin and priority-based scheduling with various queue 
mapping and unmapping criteria, we evaluate five different 
scheduling policies (three round-robin and two priority-based). 

3. GPU Command Queue Organization 

Figure 2 shows the GPU queue scheduling and task dispatching 
mechanism used in this paper. The GPU device driver is 
responsible for creating queues in the system memory. The driver 
also creates a queue list that contains the queue descriptors of all 
the queues created by the application. Queue descriptors have all 
the necessary information to access HSA queues, such as the 
pointer to the base address of a queue. This queue list is passed to 
the GPU hardware scheduler during initialization phase. Although 
the queue list is read by the hardware scheduler, it is modified only 
by the device driver. The hardware scheduler maps and unmaps 
queues from the queue list to the hardware list stored inside the 
packet processor at each scheduling quantum. The number of 
entries in the hardware list is limited and each entry in the hardware 
list corresponds to the HSA queue mapped to a hardware queue. 
The packet processor monitors these hardware queues, processes 
both kernel dispatch and barrier HSA packets, resolves 
dependencies expressed by barrier packets and forwards ready 

tasks to the dispatcher. The dispatcher then launches these tasks on 
the shaders in work-group granularity. 

When the HSA queues are oversubscribed, the hardware 
scheduler unmaps a queue from the hardware list and maps a new 
queue from the queue list. Our baseline hardware scheduler selects 
a new queue to be mapped at each scheduling quantum based on a 
round-robin policy. However, the newly selected queue may not 
have ready tasks, resulting in idling GPU resources. Priority-based 
queue scheduling techniques tries to reduce idling by intelligently 
mapping a queue with ready tasks. The next section discusses this 
priority-based queue scheduling in detail. 

4. Priority-Based Queue Scheduling 

While HSA can expose more task level concurrency to the GPU, it 
shifts the burden of task scheduling to the hardware. In a complex 
task graph with hundreds of interdependent tasks, many task queues 
can become unblocked at any given time. From a data dependency 
standpoint, the task scheduler is free to launch any ready task. 
However, a naïve policy may not be able to achieve efficient use of 
resources and may leave tasks blocked for long periods of time. 

Figure 3 explains the deficiency of the naïve scheduler. Tasks 
on the initial critical path of execution are marked in red in Figure 
3 (a). After task A is executed, both tasks B and C are ready to 
execute. A naïve scheduler could pick either of these two tasks, but 
executing task B first is the better scheduling decision because task 
B is on the critical path. Task C can be delayed, but Figure 3 (b) 
shows delaying the execution of task C until tasks B, D, and F 
complete, puts task C on the critical path. A more informed 
scheduler would have executed task C before task F.  

To make better decisions, a task priority-aware scheduler is 
needed. Many techniques have been proposed in literature to 
prioritize tasks [15][54]. One such technique is the Heterogeneous 
Earliest-Finish-Time (HEFT) algorithm proposed by Topçuoğlu et 
al. [54] that computes upward ranks of the tasks and selects the task 
with highest upward rank for scheduling. A task’s upward rank is 
its distance from an exit node. Figure 3 (c) shows the same task 
graph from Figure 3 (a) with each task annotated with their upward 
rank. The ranking uses HEFT algorithm but assumes equal 
computation time for all tasks. Since the tasks are now annotated 
with priorities, a scheduler that is aware of the priorities can make 
informed scheduling decisions. For example, after task A is 
completed, priority-based scheduler will choose task B to be 
scheduled because the rank of task B (rank 4) is higher than task C 
(rank 3). In this paper, we use this HEFT algorithm to determine 
the priorities of each task.  

4.1 Priority-based Hardware Scheduling in HSA 

There are three challenges to implement a priority-based task 
scheduler, (a) the tasks need to be annotated by a ranking algorithm, 
(b) these annotations should be exposed to the scheduler, and (c) 
the scheduler should be able to use these rankings when making 
scheduling decisions. 

Since HSA relies on queues to expose concurrency and schedule 
tasks, we modified the HSA queue creation API [Figure 4], to 
include a priority field. A queue priority (or rank) is a positive 
integer value that can be specified at the time of queue creation and 

 
 

Figure 3. Task graph execution and priorities. 
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an application can create queues with any priority levels as needed. 
An application can then use any ranking algorithm to determine a 
task’s priority and enqueue it into the appropriately ranked HSA 
queue. Figure 3 (d) shows the mapping of prioritized tasks from 
Figure 3 (c) to HSA queues. Q1 corresponds to the HSA queue with 
priority 1, Q2 with priority 2 and so on. With the tasks enqueued to 
the HSA queue with matching priority, a priority-based queue 
scheduling effectively becomes a priority-based task scheduler.   

By enqueuing a prioritized task into a related prioritized HSA 
queue, the queue scheduler achieves the desired order of task graph 
execution. At the beginning of every scheduling quantum, the 
priority-based scheduler maps queues with the highest priority to 
the hardware queues. Since the application has enqueued tasks to 
the queues based on task priority, the scheduler giving preference 
to a high priority queue over a low priority queue directly translates 
to a high priority task being scheduled before a low priority task. 
We describe the round-robin and priority-based scheduling policies 
in detail and identify key optimizations for each policy in the next 
subsection. 

4.2 Scheduling Policies 

While round-robin and priority-based scheduling schemes 
determine the queue to be mapped, they do not decide when to map 
or unmap a queue. Based on when a queue is unmapped, the 
scheduling policies are further classified as timeout and immediate. 
The default timeout policy waits for the completion of a scheduling 
quantum to swap out a queue. This policy will lead to hardware 
queue idling if a mapped queue becomes empty in the middle of a 
scheduling quantum. To avoid this, we introduced the immediate 
scheduling policy that swaps a queue immediately after that queue 
runs out of work. This policy allows empty queues to be swapped 
out immediately and do not occupy a hardware queue slot.  

Mapping an empty queue to a hardware queue can result in its 
underutilization. Such a situation can happen if the scheduler is not 
aware of the state of the queues and we classify it as a blind 
scheduling policy. The blind policy maps a queue even if it is 
empty. To determine whether a queue is empty, the hardware 
scheduler has to read the queue descriptor before mapping it. 
However, this extra memory read is not a big overhead as compared 
to a hardware queue idling due to an empty mapped queue. 
Combining blind, timeout, and immediate policies with round-
robin and priority-based schemes, we explored three variants of 
round-robin scheduling and two variants of priority-based 
scheduling. 

Round-robin blind (RR-blind): The default round-robin 
hardware task scheduler picks the next HSA queue to be mapped to 
hardware in simple round-robin fashion. To ensure fair resource 
allocation, the GPU task scheduler unmaps one HSA queue and 
maps a new one at every scheduling quantum.  The selection of the 

victim queue to be unmapped is also done using the same round-
robin policy. Since this scheduling policy does not have any notion 
about the state of a queue, it is called RR-blind and can end up 
mapping an empty HSA queue with no tasks to hardware, resulting 
in idle GPU resources. Note that a queue is mapped/unmapped at 
the end of a scheduling quantum. 

Round-robin timeout (RR-tout): This optimized round-robin 
scheduler is similar to the RR-blind but does not map an HSA 
queue to a hardware slot if that queue is empty. This scheduling 
policy is aware of the state of the queue (empty or non-empty 
queue) and uses that information to make a better scheduling 
decision than RR-blind. RR-tout also maps/unmaps a queue at the 
end of a scheduling quantum, when the scheduling timer timeouts 
and hence the name round-robin timeout.  

Round-robin immediate (RR-imm): This scheduling policy 
further enhances the RR-tout scheduling policy by unmapping 
hardware queues as soon as they become empty instead of waiting 
for the end of the scheduling quantum. By immediately interrupting 
the scheduler in the middle of a scheduling quantum, hardware 
ensures its finite hardware queue slots are monitoring non-empty 
queues. 

Queue priority timeout (QP-tout): This scheduling policy 
uses user-provided HSA queue priorities to more effectively 
schedule software queues to hardware. At the beginning of every 
scheduling quantum, the scheduler maps the highest priority, non-
empty HSA queues. Once mapped to hardware, a queue will never 
be unmapped in favor of a lower priority queue before it is emptied. 

Queue priority immediate (QP-imm): This is the same as RR-
imm except that the new queue to be mapped is chosen based on its 
priority. 

Table 1 summarizes these scheduling policies. The blind suffix 
in the policy name means that it maps a queue without looking at 
its state. The rest of the policies are aware of the state of queue 
before mapping and only maps them to hardware when they have 
work. The -blind and -tout policies wait for the scheduling quantum 
timeout before unmapping a queue, whereas the -imm variant 
unmaps a queue immediately after it becomes empty and the 
scheduling quantum timeout.      

5. Methodology 

5.1 Simulator 

We used the gem5 [8] simulator for modeling our baseline APU 
system. The APU system modeled consists of a detailed x86 out-
of-order CPU model combined with an AMD GCN GPU model [3]. 
Each compute unit (CU) of the GPU has four, 16-wide SIMD ALUs 

Table 1. Scheduling policies. 

Policy 

name 

Scheduling 

policy 

Mapping 

criteria 

Unmapping 

criteria 

RR-blind Round robin Blind Timeout 

RR-tout Round robin Queue state 

aware 

Timeout 

RR-imm Round robin Queue state 

aware 

Immediately 

on empty 

QP-tout Priority based Queue state 

aware 

Timeout 

QP-imm Priority based Queue state 

aware 

Immediately 

on empty 

 

Table 2. Simulation parameters. 

CPU Clock 3GHz 

CPU Cores 2 

CPU L1 Data Cache 64KB  

CPU L1 Instruction Cache 32KB  

CPU Shared L2 Cache 2MB  

GPU Clock 800MHz 

GPU CUs 8 

GPU Exec Units 5 (4 VALU and 1 AGU) 

GPU Exec Unit width 16 

GPU L1 Data Cache 64KB  

GPU L1 Instruction Cache 16KB 

GPU Shared L2 Cache 512KB 

Hardware queues 20 

Scheduling quantum 100us 
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and one 16-wide SIMD address generation unit that generates 
addresses for memory instructions. Each wavefront has 64 work 
items and takes 4 cycles to execute on a 16-wide SIMD execution 
unit. To keep execution resources busy during long latency memory 
operations, a CU stores up to 40 wavefront contexts, overlapping 
execution of different wavefronts with long latency memory 
operations. Each CU has a private L1 data cache. The instruction 
cache is shared by 4 CUs. All L1 data caches and instruction caches 
are backed by a common shared L2. Both CPU and GPU share the 
same virtual address space and maintain coherent caches. 

The hardware scheduler models the queue swap logic discussed 
in Section 3. Different scheduling policies are modeled by the 
hardware scheduler and queue swapping is guided by the 
scheduling policy. This queue swapping logic can support static 
task graph execution, dynamic task graph execution and fork-join 
dynamic parallelism supported by CUDA [40]. This model 
supports the stock HSA runtime and we used version 1.1 for our 
experiments [27]. We run gem5 in system call emulation mode (SE 
mode) so that the emulated device driver can communicate with the 
HSA runtime via emulated Linux ioctl calls [30]. The emulated 
device driver is also responsible for managing the queue structures 
in the system memory and communicating this information to the 
hardware scheduler using the mechanism described in Section 3. 
Since the system does not stall task submission when unmapping 
queues and an individual queue is mapped for a long time before 
getting unmapped, queue unmapping  has minimal impact on 
performance, thus  we only modeled it functionally. 

Table 2 lists the simulation parameters used for the evaluation 
of different scheduling policies. The packet processor modeled has 
20 hardware queues and all the applications create up to 128 HSA 
queues to launch tasks. For queue priority based schedulers, a 
prioritized task is enqueued on the HSA queue with the same 
priority. But, for round-robin schedulers, the tasks are enqueued 
randomly to avoid pathological scenarios. The scheduling quantum 
was fixed at 100us. We modeled a GPU core that is similar to an 
AMD FX-8800P APU [23] with 8 CUs. These CUs run at 800MHz 
frequency whereas CPUs run at a much faster clock speed of 3GHz. 
Since our benchmarks are multi-threaded, we instantiated 2 CPU 
cores in our system. So, for some benchmarks, our simulated 
system will be running both CPU and GPU concurrently with these 
heterogeneous cores communicating over a fully coherent cache 
subsystem modeled in ruby [38]. Next, we discuss these 
benchmarks in detail. 

5.2 Benchmarks 

We used three task-based benchmarks, Needleman-Wunsch, LU 
decomposition and Cholesky factorization [47], to evaluate 
different scheduling policies. Since our objective is to use fine-
grain tasks to fill the GPU, we used the asynchronous task-based 
versions of these benchmarks instead of their bulk-synchronous 
versions. These task-based versions use Asynchronous Task and 
Memory Interface (ATMI), a runtime that allows programmers to 
specify tasks and their dependencies with simple data structures [4].  

Needleman-Wunsch (NW): NW uses the Needleman-Wunsch 
algorithm to align protein sequences. It has two type of GPU tasks 
operating on a tiled 2-D input matrix. Each task operates on a 
predetermined number of tiles. For a given input matrix size, as 
number of tiles in a task decreases, the task becomes more fine-
grain and the number of task increases making the task graph more 
complex. However, since NW has only GPU tasks, the GPU does 
the same amount of work irrespective of the granularity of tasking 
for a given input matrix size. 

LU Decomposition (LUD): LUD decomposes a tiled 2-D 
matrix into an upper and lower triangular matrix. It has four 
different types of GPU task that operate on this tiled input matrix. 
Similar to NW, the task sizes vary with the number of tiles in a task 
and fine-grain tasks operate on fewer tiles, making the task graph 
larger and more complex. However, out of the four GPU tasks, one 
task always operates on a single tile irrespective of task granularity. 
Thus, for tasks of this type, the amount of work done on the GPU 
remains same irrespective of the tasking granularity. 

 
Figure 5. Cholesky task graph (a) 2x2 tiled (b) 3x3 tiled. The 

shaded nodes represent CPU tasks. The tasks in 2x2 tiled task 

graph are 1.5x the tasks in 3x3 tiled task graph. 
 

Table 3. Benchmark tile size, task size, number of tasks and 

number of priority levels for a given input matrix size and 

different task granularities. 

Benchmarks NW LUD Cholesky 

Input Size 1536 

X 

1536 

1024 

X 

1024 

2048 

X 

2048 

Tile Size Fine 32 X 32 32 X 32 128 X 128 

Medium 32 X 32 32 X 32 256 X 256 

Coarse 32 X 32 32 X 32 384 X 384 

Task size Fine 10 tiles 1 tile,  

6  tiles,  

36 tiles 

1 tile 

Medium 20 tiles 1 tile, 

9 tiles, 

 81 tiles 

1 tile 

Coarse 30 tiles 1 tile, 

12 tiles, 

144 tiles 

1 tile 

Number of 

wavefronts 

in a task 

Fine 10 1, 6,   

576 

3, 4, 4 

Medium 20 1, 9, 

1296 

8, 10, 16 

Coarse 30 1, 12, 

2304 

12, 21, 36 

Number of 

GPU tasks 

in task 

graph 

Fine 275 590 800 

Medium 165 362 112 

Coarse 130 269 50 

Number of 

priority 

levels in task 

graph 

Fine 95 94 46 

Medium 95 94 22 

Coarse 95 94 16 
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Cholesky factorization: Cholesky factorization involves the 
factorization of a symmetric positive-definite matrix. The task-
based algorithm of Cholesky factorization employs four different 
types of tasks, three GPU tasks and one CPU task, for factorizing a 
2-D matrix. Unlike NW or LUD where tasking granularity is 
changed by the number of tiles in a task, the tasking granularity of 
Cholesky factorization is changed by changing the tile size itself. 
Additionally, since there are GPU and CPU tasks in the task graph, 
the ratio of work done by CPU and GPU changes depending on the 
tasking granularity. 

Figure 5 compares the task graph of a 2x2 tiled and 3x3 tiled 
Cholesky factorization algorithm. The shaded tasks represent CPU 
tasks and the unshaded tasks are GPU tasks. The tile sizes and 
hence the task size of a 2x2 task graph is 1.5x that of a 3x3 task 
graph. Comparing Figure 5 (a) and Figure 5 (b), the ratio of GPU 
to CPU tasks with 2x2 tiling is 1:1 but that of a 3x3 tiling is 3:7. 
That means, for Cholesky factorization, unlike NW and LUD, the 
amount of work done by GPU is different for different task sizes. 

We compared the effect of task granularity on different 
scheduling policies by running fine-grain, medium-grain and 
coarse-grain tasks. Table 3 lists the task sizes, tile sizes, number of 
tasks and number of priority levels in a task graph for different task 
granularities and for a given input size. The prioritization policy 
uses the HEFT algorithm. As expected, Table 3 shows with finer 
task granularity, the number of tasks and task graph complexity 
increases. It can also be seen from that table that unlike NW and 
Cholesky, different tasks in LUD operate on different number of 
tiles. For example, fine-grain LUD tasks operate on 1, 6 and 36 tiles 
with these tasks launching 1, 6 and 567 wavefronts respectively. 

Thus, even the fine-grain LUD tasks are capable of occupying the 
entire GPU. In contrast, even coarse-grain NW or Cholesky do not 
launch enough tasks to fill the entire GPU with a capacity of 320 
concurrent wavefronts (8 CUs X 40 wavefronts per CU). It should 
be noted in fine-grain LUD that 366 out of the 590 tasks are still 
large tasks. In this case GPU utilization can still improve, since 
asynchronous task scheduling allows small tasks to execute 
simultaneously with larger tasks.  

Table 3 also shows that the number of priority levels for both 
LUD and NW. Since LUD and NW keep the same tile size but only 
change the number of tasks for different granularities, the 
prioritization levels did not change. Cholesky, on the other hand, 
has different tile sizes for different task granularities resulting in 
fewer priority levels for coarse-grain tasks. 

6. Results 

The main objective of priority-based scheduling is to map 
oversubscribed queues in the best order to maximize utilization. 
Therefore, efficiency of these scheduling policies can be quantified 
by measuring idle cycles and the number of active wavefronts. Idle 
cycles are the number of cycles the GPU has no work to execute 
during task graph execution and are counted starting when the GPU 
begins executing the first task until the last GPU task completes. 
Fewer idle cycles indicates that the scheduling policy was more 
effective in filling available hardware queues. Active wavefronts 
are the number of wavefronts that are concurrently running on a 
GPU and is a measurement of the resources utilization. Active 
wavefronts are sampled each time a new workgroup is launched. 
Since active wavefronts measures GPU utilization when it is active 
and idle cycles measure the time the GPU is inactive, a combination 
of these two gives insight into application performance.  

6.1 GPU Idle Cycles 

Figure 6 (a) shows the percentage of GPU idle cycles of NW 
benchmark for different task granularities using a 2048x2048 
matrix. Across all evaluated task granularities, one can see that the 
round-robin based scheduling policies leave the GPU idle for much 
of application’s execution. As expected, the RR-blind scheduling 
policy that maps empty queues performs the worst with more than 
97% idle cycles for all evaluated task granularities. Although 
optimized RR schedulers (RR-tout and RR-imm) reduce the idle 
cycles, it is QP-based scheduling policies that are able to greatly 
reduce idle cycles during execution. While QP-tout brings the idle 
cycles down to 40%, QP-imm further reduces the idle cycles to 
fewer than 10% for all evaluated task granularities. Similar to NW, 
LUD also shows significant idle cycle reduction with QP-based 
scheduling schemes as shown in Figure 6 (b). Idle cycles are 
reduced to just 2% for all experiments with QP-based scheduling.  

Figure 6 (c) shows idle cycles for Cholesky benchmark. Except 
for the RR-blind scheduling policy, all other scheduling policies 
achieve fewer than 15% idle cycles. The task graph for Cholesky 
has relatively high concurrency, as indicated by fewer priority 
levels in its task graph. For example, the 2048x2048 matrix with 
fine-grain tasking has 800 GPU tasks but with just 46 priority levels 
(refer Table 3). In contrast, the fine-grain task graph of NW 
benchmark with 1536x1536 input matrix has 275 tasks but with 96 
priority levels. A higher number of tasks per priority level indicates 
that a relatively large number of tasks are ready to execute at any 
point during the task graph execution. Because of this, a scheduling 
algorithm that maps only non-empty queues is likely to have at least 
one ready task among the 20 mapped queues. Hence, even 
optimized RR schedulers see few idle cycles for Cholesky. Despite 
this, it can be seen from Figure 6 (c) that QP-based schedulers are 
able to further reduce idle cycles. 
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Figure 6. Percentage of idle cycles of each benchmark for 

different task granularities. 
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6.2 GPU Resource Utilization 

GPU utilization is measured by the number of wavefronts 
concurrently running on GPU called active wavefronts. Figure 7 
shows the active wavefronts normalized to RR-tout scheduling 
policy. A large number of active wavefronts potentially indicates 
high utilization of GPU resources. For NW, QP scheduling 
schemes achieve better GPU utilization, with fine-grain tasks 
getting the maximum benefit. Fine-grain tasks expose higher 
concurrency and the priority scheduling policies are able to take 
advantage of this as indicated by their increase in active 
wavefronts. Figure 7 (b) shows active wavefronts improves for 
LUD as well with QP-based scheduling and fine-grain tasks. 
However, the improvement is only modest (8% for fine-grain tasks) 
as compared to NW. Since LUD has large tasks that can fully 
occupy a GPU, the active wavefronts are high even when running 
a single task. Thus fine-grain tasking achieves only modest 
additional improvement by running small tasks with relatively less 
resource requirement concurrently with the  larger tasks. 

Figure 7 (c) shows active wavefronts for Cholesky. Following 
the trend of NW and LUD, Cholesky also achieves higher resource 
utilization with fine-grain tasks and QP-based scheduling polices. 
However, the medium and coarse granular tasks show only modest 
utilization improvements with QP-based scheduling. QP-based 
scheduling increases utilization of medium-granular tasking by 
80% whereas no improvement is visible with coarse-granular 
tasking. For coarse-granular tasking, there are just 50 GPU tasks in 
the task graph. Since there are 20 hardware queues exposing 20 out 

of the 50 available tasks at all times, many tasks are dispatched 
simultaneously even with optimized RR scheduling policies. 
Because of this, QP cannot do much better than RR variants as 
shown by the similar number of active wavefronts across all 
scheduling policies for coarse-grain tasks. 

6.3 Application Performance 

The GPU resource utilization improvement can directly 
translate to GPU execution speedup. Figure 8 shows the execution 
speedup on GPU for different task granularities normalized against 
their RR-tout. For NW, one can see that all task granularities benefit 
from QP scheduling with fine-grain tasks improving the most. By 
comparing Figure 7 and Figure 8, it can be observed that the 
performance benefits directly come from increasing active 
wavefronts. Although LUD achieves only a modest increase of 
active wavefronts, the GPU shows tangible speedup emphasizing 
the ability of parallel tasks to fill more available GPU resources.  

However, for Cholesky, the increase of active wavefronts 
translates to a significant performance gain only for fine-grain 
tasks. The medium granularity tasking shows a slight performance 
degradation, while coarse granularity shows a slight improvement. 
The performance degradation for medium granularity Cholesky is 
due to a decrease in cache hit rate, as shown in Figure 9.  One can 
observe that both the L1 hit rate [Figure 9 (a)] and L2 hit rate 
[Figure 9 (b)] are lower for every scheduling policy compared 
against the RR-blind policy. 

Increasing active wavefronts can negatively affect the execution 
time of concurrently running wavefronts due to interference. As a 
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Figure 7. Active wavefronts for different task granularity 
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Figure 8. Execution speedup on GPU normalized to RR-tout 

of each task granularity. 
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result, individual wavefronts, and consequently individual kernels, 
take longer to complete. Because of this interference, the 
throughput benefits from running large number of active 
wavefronts can be eclipsed by the longer kernel execution time. 

Comparing the cache hit rate [Figure 9] and active wavefronts 
of Cholesky [Figure 7 (c)], one can see that with a larger number of 
active wavefronts, the L1 and L2 cache hit rates are reduced. Since 
all concurrently running wavefronts compete for cache resources, 
more active wavefronts result in less cache capacity per wavefront. 
This competition for cache resources leads to cache thrashing. This 
effect is directly reflected by the increase in GPU stall cycles as 
shown in Figure 9 (c). Stall cycles indicate that a CU cannot execute 
any instruction because all of its wavefronts are waiting on memory 
operations. So, lowering the L1 cache hit rate increases stall cycles, 
which leads to GPU performance degradation.  

Comparing GPU performance of Cholesky [Figure 8 (c)] and 
GPU stall cycles [Figure 9 (c)], it can be observed that the stall 
cycles directly correlate with the performance degradation of QP-
based scheduling techniques for medium and coarse granularity 
tasking, confirming that benefits from active wavefronts are 
negated by interference from greater numbers of wavefronts. 
However, for fine-grain tasks, although QP scheduling encounters 
a reduced cache hit rate [Figure 9], the relatively large number of 
active wavefronts [Figure 7 (c)] overcome the cache hit rate 
challenge by overlapping long latency memory accesses with 
wavefront execution. This can be seen from Figure 9 (c) where QP-
based scheduling schemes have fewer stall cycles than RR variants. 

This reduced stall cycles directly translate to application 
performance improvement [Figure 8 (c)]. 

In addition to GPU execution time, the overall application 
execution is also impacted by idle cycles. We show the overall 
application speedup with different scheduling policies for different 
task granularities in Figure 10. Since the input size is fixed and only 
the tasking granularity is changed, all of these experiments perform 
the same amount of work. As such, we have normalized this 
speedup against coarse-grain RR-timeout. For NW, although 
different scheduling policies have similar idle cycle reduction for 
all three tasking granularities [Figure 6 (a)], the fine-grain tasks are 
able to better utilize the GPU hardware in terms of active cycles 
[Figure 7 (a)]. Because of this, QP scheduling polices are the most 
effective for fine-grain tasking and achieve 26x speedup over 
coarse-grain RR-timeout. In comparison, coarse-grain and 
medium-grain tasking achieve a 23x and 24x speedup, respectively. 
Overall, fine-grain tasks benefit the most with QP-imm and achieve 
11% speedup over QP-imm with coarse-grain tasks. 

The speedup of LUD for different task granularities are given in 
Figure 10 (b). Unlike NW, the fine-grain tasking does not 
outperform coarse-grain tasking by a huge margin with QP 
scheduling. Although GPU execution speedup with fine-grain LUD 
is 1.6x faster with QP-immediate, medium and coarse are not far 
behind with a 1.25x and 1.4x speedup, respectively [Figure 8 (b)]. 
So, in this case, different granularities benefit similarly in terms of 
GPU execution speedup. However, the application speedup of QP-
based scheduling improves by more than 5x for all tasking 
granularities because of the reduction in idle cycles [Figure 6 (b)].  
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Figure 9. Cholesky benchmark (a) GPU L1 cache hit rate (b) 

GPU L2 cache hit rate and (c) GPU stall cycles normalized to 
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Figure 10. Application speedup for different task 

granularities normalized to the RR-tout of coarse-grain task. 
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Finally, application performance of Cholesky is shown in 
Figure 10 (c). The application speedup for different task sizes 
follows the same pattern as GPU speedup except for the RR-blind 
scheduling policy. Since QP schedulers do not significantly reduce 
idle cycles as compared with optimized RR schedulers, the 
application performance is determined exclusively by GPU 
performance. For RR-blind, although its GPU performance is 
comparable to RR-opt for medium and coarse-grain tasks, a greater 
percentage of idle cycles reduces overall application performance. 

6.4 Scalability of Scheduling Policies 

To demonstrate the scalability of scheduling policies, we run the 
benchmarks with three different input sizes and fine-grain tasks. 
Figure 11 (a) shows the speedup of NW for different input sizes, 
normalized against their respective RR-timeout. The 512, 1024 and 
1536 in the x-axis denotes an input matrix size of 512x512, 
1024x1024 and 1536x1536, respectively. The tasking granularity 
is fixed to the fine-grain tasking size of 6 tiles per task across all 
these input sizes. From that figure, it can be seen that the 
performance of RR-based schedulers is significantly inferior 
compared to QP-based schedulers, highlighting the need for better 
scheduling policies for oversubscribed queues. The RR-tout and 
RR-imm show similar speedup. Although RR-imm unmaps a queue 
immediately after that queue gets empty, there is no guarantee that 
the newly mapped queue has the right set of tasks. This highlights 
the fact that searching for the right set of tasks by mapping and 
unmapping queues in a round-robin fashion is the biggest overhead 
for RR scheduling policies. QP-based scheduling polices eliminate 
this overhead and perform much better, as depicted in Figure 11 
(a).  QP-imm achieves 45x speedup for the largest input size. 
Compared to RR-blind, QP-imm is 91x faster. Figure 11 (a) also 
illustrates that QP-based scheduling policies take advantage of the 
immediate unmapping of an empty queue resulting in QP-imm 
outperforming QP-timeout in all cases. While both QP-imm and 
QP-timeout have the same queue mapping-unmapping sequence, 
QP-immediate is able to map the next queue immediately without 
waiting for the scheduling quantum to complete. This is why QP-
immediate outperforms QP-timeout. LUD speedup [Figure 11 (b)] 
follows a similar pattern of NW with larger input sizes getting 
higher benefit from QP scheduling. However, the speedup saturates 
at the 768x768 input size. 

Figure 11 (c) shows the performance of Cholesky for different 
input sizes. As discussed in Section 6.1, Cholesky has high 
concurrency with larger input sizes and fine-grain tasking, enabling 
multiple tasks to be ready for execution at any point. So, even the 
optimized RR policies are not suffered from low GPU utilization, 
as indicated by the idle cycle percentage [Figure 6 (c)]. Because of 
this reason, the opportunities for QP schedulers decrease under 
larger inputs. This explains the relatively lower performance 
improvement for larger input sizes with QP scheduling for 
Cholesky. 

7. Related Work 

Task scheduling schemes: There has been considerable amount of 
research done on efficiently scheduling tasks to improve resource 
utilization and power efficiency [6][24][36][44][60][5][19][20]. 
Chronaki et al. [15] proposed a policy for scheduling dependent 
tasks onto the asymmetric cores based upon criticality of each task.  
Daoud et al. [18] proposed a compile-time task scheduler based on 
the longest dynamic critical path algorithm. Specifically, this 
algorithm attempts to identify the most important tasks and assigns 
a higher priority to them. Then, the runtime scheduler will take into 
account these priorities. Topçuoğlu et al. [54] proposed the 
Heterogeneous Earliest Finish Time (HEFT) algorithm and Critical 

Path on a Processor (CPOP) algorithm that use upward/downward 
rank for fast task scheduling in heterogeneous systems. We used 
this HEFT scheduling algorithm for ranking our tasks. However, it 
is important to note that the oversubscribed queue challenge 
described in this paper is not inherently a task scheduling problem 
but a queue scheduling problem. We proposed one solution that 
uses the notion of task scheduling to mitigate the queue 
oversubscription challenge. 

Task prioritization techniques: In addition to providing 
insights into task scheduling, Topçuoğlu et al. [54] also propose 
several algorithms that can be used to assign priorities to tasks 
according to which can be executed in parallel and how great the 
computation cost of a task is. Wu et al. [59] proposed modified 
critical path based prioritization for task distribution in message 
passing systems. Hwang et al. [26][26] presented earliest time first 
scheduling algorithm that reduces the communication delays. Tao 
et al. [53] proposed a cost driven workflow scheduling algorithm 
based on the Markov Chain-based resource availability prediction 
model. Wang et al [58] proposed locality aware task prioritization 
in GPUs. Compared to all prior efforts, we focus on prioritizing 
tasks by prioritizing the queues to which that task is enqueued, 
improving the hardware resource utilization and reducing the idle 
time of oversubscribed command queues. 

While we have used HEFT algorithm for task prioritization, that 
algorithm is not suitable for dynamic task graphs where the task 
graph is not known a priori. For prioritization of dynamic task 
graphs, a heuristic based or dynamic critical-path based algorithms 
can be used.  
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Figure 11. Application speedup for different input sizes with 

fine-grain tasks. The speedup of each input size is normalized 

to its RR-tout. 
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Fine-grain parallelism: Fine-grain parallelism/tasking is an 

effective and widely-used approach to improve resource utilization 
on heterogeneous and homogeneous multi-core systems 
[33][12][16][21]. However, it requires sophisticated task 
scheduling policies to avoid the load imbalance of relatively small 
tasks and the overhead they create.  Kumar et al. [34] described 
Carbon, which uses hardware queues and messaging protocols to 
distribute tasks across cores. Blumofe et al. [9] proposed work-
stealing to allow less busy processors to take work from busy 
processors to better balance the load. Sanchez et al. [50] presented 
asynchronous direct messages for fast communication between 
threads in CMP, which is then used in their scheduler to enable 
efficient task stealing. Our work uses these asynchronous fine-grain 
task-based benchmarks to highlight the importance of better queue 
scheduling policies.  

Wavefront scheduling: Numerous researches has proposed 
efficient wavefront scheduling to hide long latency operations 
[39][35][37], maintain cache locality [49][31], and resolve control 
divergence [22][48][11]. Narasiman et al. [39] described two-level 
warp scheduling that allows groups of threads to execute long 
latency operations in an interleaved fashion. Such interleaving can 
better hide the long latencies. Rogers et al. [49] proposed cache 
conscious wavefront scheduling which improves performance by 
avoiding thrashing the cache. Fung et al. [22] dynamically regroups 
the threads into groups to reduce the intra-group control 
divergence. The focus of our work is command queue scheduling 
to reduce the starvation of work on a GPU whereas the wavefront 
scheduling efforts try to increase the efficiency of GPU while doing 
that work. Hence, our work is orthogonal to these wavefront 
scheduling efforts and can be used with any of these wavefront 
scheduling policies. 

Kernel launch overheads: The overhead of launching kernels 
from both host and device has been the investigation topic of many 
studies [40] [52][56][57]. Wang et al. [56] characterized dynamic 
applications and showed that the overhead, both in terms of 
memory space and launch latency, is exponentially increased along 
with the number of launched kernels. Wang et al [57] proposed 
DTBL on NVIDIA GPU which launches thread blocks instead of 
kernels to avoid the launch latency. Chen et al. [13] proposed 
compiler support which reuses the parent thread to execute the child 
kernels. Hajj et al. [25] proposed a runtime kernel management 
which fuses the child kernels since the child kernels are usually 
light-weight. Tang et al. [52] pointed out that launching arbitrary 
number of child kernels can encounter hardware restrictions. Our 
work is orthogonal to these works that aim at reducing kernel 
launch overhead.  

8. Conclusion 

Multiple command queues are used in a GPU to expose application 
concurrency. Although a large number of command queues can 
increase concurrency, they also cause queue oversubscription and 
can lead to idle resources. This paper brings to attention this largely 
overlooked problem of queue oversubscription in modern GPUs. 

We also showed that this queue oversubscription challenge can 
be mitigated by guiding the hardware to service queues in a better 
order. Specifically, we evaluate queue prioritization, where the 
programmer uses prioritization to create a schedule for servicing 
the queues. With our proposed queue prioritization scheme, we 
were able to reduce the GPU idling to less than 2% for the evaluated 
benchmarks and achieve speedups up to 45x as compared to a naive 
round-robin policy.  
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